Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(17): e202300122, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401840

RESUMO

Synthetic light-driven consortia composed of phototrophs and heterotrophs have attracted increasing attention owing to their potential to be used in sustainable biotechnology. In recent years, synthetic phototrophic consortia have been used to produce bulk chemicals, biofuels, and other valuable bioproducts. In addition, autotrophic-heterotrophic symbiosis systems have potential applications in wastewater treatment, bioremediation, and as a method for phytoplankton bloom control. Here, we discuss progress made on the biosynthesis of phototrophic microbial consortia. In addition, strategies for optimizing the synthetic light-driven consortia are summarized. Moreover, we highlight current challenges and future research directions for the development of robust and controllable synthetic light-driven consortia.


Assuntos
Biotecnologia , Consórcios Microbianos , Biotecnologia/métodos , Biodegradação Ambiental , Simbiose , Biologia Sintética/métodos
2.
Angew Chem Int Ed Engl ; 62(2): e202215013, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36378012

RESUMO

CO2 sequestration engineering is promising for carbon-negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose-producing CO2 sequestration module and a super-coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of -22.27 to -606.59 kgCO2 e kg-1 in the end products. This novel light-driven community could facilitate circular economic implementation in the future.


Assuntos
Carbono , Cianobactérias , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Cianobactérias/metabolismo , Sacarose/metabolismo
3.
Glob Chang Biol ; 28(21): 6446-6461, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971768

RESUMO

Soil microbes make up a significant portion of the genetic diversity and play a critical role in belowground carbon (C) cycling in terrestrial ecosystems. Soil microbial diversity and organic C are often tightly coupled in C cycling processes; however, this coupling can be weakened or broken by rapid global change. A global meta-analysis was performed with 1148 paired comparisons extracted from 229 articles published between January 1998 and December 2021 to determine how nitrogen (N) fertilization affects the relationship between soil C content and microbial diversity in terrestrial ecosystems. We found that N fertilization decreased soil bacterial (-11%) and fungal diversity (-17%), but increased soil organic C (SOC) (+19%), microbial biomass C (MBC) (+17%), and dissolved organic C (DOC) (+25%) across different ecosystems. Organic N (urea) fertilization had a greater effect on SOC, MBC, DOC, and bacterial and fungal diversity than inorganic N fertilization. Most importantly, soil microbial diversity decreased with increasing SOC, MBC, and DOC, and the absolute values of the correlation coefficients decreased with increasing N fertilization rate and duration, suggesting that N fertilization weakened the linkage between soil C and microbial diversity. The weakened linkage might negatively impact essential ecosystem services under high rates of N fertilization; this understanding is important for mitigating the negative impact of global N enrichment on soil C cycling.


Assuntos
Nitrogênio , Solo , Bactérias/genética , Carbono , Ecossistema , Fertilização , Nitrogênio/análise , Microbiologia do Solo , Ureia
4.
BMC Plant Biol ; 21(1): 426, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537013

RESUMO

BACKGROUND: Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey. is an arid region shrub with ecological importance. We explored the pollen limitation and seed set of Hedysarum scoparium in fragmented and restored environments, and examined whether pollen limitation is a significant limiting factor for seed set. We also compared floral traits and pollinator visitation between both habitats, and we determined the difference of floral traits and pollinators influenced reproductive success in Hedysarum scoparium. RESULTS: Our results indicated that supplementation with pollen significantly increased seed set per flower, which is pollen-limited in this species. Furthermore, there was greater seed set of the hand cross-pollination group in the restored habitat compared to the fragmented environment. More visits by Apis mellifera were recorded in the restored habitats, which may explain the difference in seed production between the fragmented and restored habitats. CONCLUSIONS: In this study, a positive association between pollinator visitation frequency and open flower number was observed. The findings of this study are important for experimentally quantifying the effects of floral traits and pollinators on plant reproductive success in different habitats.


Assuntos
Fabaceae/fisiologia , Flores/fisiologia , Pólen/fisiologia , Animais , China , Ecossistema , Polinização , Sementes/crescimento & desenvolvimento
5.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2010-2025, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227291

RESUMO

Plant-derived aromatic natural products have important medicinal value and can be made into pharmaceutical and healthcare products with antibacterial, anti-inflammatory, analgesic, anti-oxidative, insecticidal and anthelmintic, expectorant and cough suppressant, tranquilizer and antitumor effects. However, the low content of aromatic natural products in plants and the difficulty and high costs in extraction and purification hampered its large-scale production and application. Recent advances in synthetic biology and metabolic engineering have enabled the tailor-made production of aromatic natural products using engineered microbial cell factories. This review summarizes the categories, the synthetic pathways, the key enzymes and the synthetic biology strategies for production of aromatic natural products, and discusses the challenges and opportunities in this area.


Assuntos
Produtos Biológicos , Biologia Sintética , Engenharia Metabólica , Plantas
6.
Sensors (Basel) ; 20(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545838

RESUMO

This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.


Assuntos
Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas/química , Glucose Oxidase/química
7.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272666

RESUMO

Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.

8.
Mar Drugs ; 18(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085426

RESUMO

Thraustochytriidae sp. have broadly gained attention as a prospective resource for the production of omega-3 fatty acids production in significant quantities. In this study, the whole genome of Thraustochytriidae sp. SZU445, which produces high levels of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), was sequenced and subjected to protein annotation. The obtained clean reads (63.55 Mb in total) were assembled into 54 contigs and 25 scaffolds, with maximum and minimum lengths of 400 and 0.0054 Mb, respectively. A total of 3513 genes (24.84%) were identified, which could be classified into six pathways and 44 pathway groups, of which 68 genes (1.93%) were involved in lipid metabolism. In the Gene Ontology database, 22,436 genes were annotated as cellular component (8579 genes, 38.24%), molecular function (5236 genes, 23.34%), and biological process (8621 genes, 38.42%). Four enzymes corresponding to the classic fatty acid synthase (FAS) pathway and three enzymes corresponding to the classic polyketide synthase (PKS) pathway were identified in Thraustochytriidae sp. SZU445. Although PKS pathway-associated dehydratase and isomerase enzymes were not detected in Thraustochytriidae sp. SZU445, a putative DHA- and DPA-specific fatty acid pathway was identified.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Estramenópilas/genética , Proteínas de Algas/genética , Ácidos Docosa-Hexaenoicos , Ácido Graxo Sintases/genética , Ontologia Genética , Policetídeo Sintases/genética , Estudos Prospectivos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA