Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(37): 375302, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32485684

RESUMO

This paper reports an imprint and transfer approach for the rapid and inexpensive fabrication of the ultra-thin freestanding plasmonic membrane (FPM) that supports surface plasmon resonances. The imprint and transfer fabrication method involves the soft imprint lithography on an ultrathin polymer film, transfer of the perforated polymer film to a supporting frame, subsequent deposition of gold, and final removal of the polymer film. Without using any sophisticated lithography and etching processes, the imprint and transfer method can produce freestanding gold membranes with 2D arrays of submicrometer-sized holes that support plasmonic modes in the mid-wavelength infrared (mid-IR) range. Two FPM devices with an array constant of 4.0 and 2.5 µm have been simulated, fabricated, and measured for their transmittance characteristics. The fabricated FPMs exhibit surface plasmon polariton Bloch mode and extraordinary optical transmission (EOT) with the enhanced local field around the membrane. The effects of membrane thickness and angle dispersion on the FPM were investigated to show the tuning of EOT modes in IR. Furthermore, we demonstrated the refractometric sensing and enhanced IR absorption of the FPM device for its potential in chemical and biomolecule sensing applications.

2.
Nanotechnology ; 30(4): 045203, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30468679

RESUMO

This paper reports a tunable photonic device that incorporates a thin layer of phase-change material, Ge2Sb2Te5 (GST), in a photonic crystal (PC) structure. The PC structure is based on a one-dimensional grating waveguide with a metal cladding. The metal-cladded PC structure supports a guided-mode resonance (GMR) that selectively absorbs light at a particular wavelength. Inserting the GST material into the gating waveguide makes it possible to control the GMR mode. Here, the GST-PC device was numerically designed and optimized to obtain significant tuning of the GMR mode around 1550 nm. The tuning phenomena were experimentally demonstrated by the heat-induced phase change between crystalline and amorphous phases of the GST thin film. A spectral shift of the resonant wavelength from 1440 to 1610 nm was achieved via the crystallization process. The phase tuning of GST exhibits good repeatability as demonstrated by switching between amorphous and crystalline phases of GST for multiple cycles. The GST-PC device represents a new approach for tuning optical resonances with potential applications including but not limited to integrated photonic circuits, optical communications, and high-performance optical filters.

3.
Nanotechnology ; 27(29): 295301, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27276512

RESUMO

This paper presents the fabrication methodology of a linear variable photonic crystal (PC) filter with narrowband reflection that varies over a broad spectral range along the length of the filter. The key component of the linear variable PC filter is a polymer surface-relief grating whose period changes linearly as a function of its position on the filter. The grating is fabricated using a nanoreplica molding process with a wedge-shaped elastomer mold. The top surface of the mold carries the grating pattern and the wedge is formed by a shallow angle between the top and bottom surfaces of the mold. During the replica molding process, a uniaxial force is applied to stretch the mold, resulting in a nearly linearly varying grating period. The period of the grating is determined using the magnitude of the force and the local thickness of the mold. The grating period of the fabricated device spans a range of 421.8-463.3 nm over a distance of 20 mm. A high refractive index dielectric film is deposited on the graded-period grating to act as the waveguide layer of the PC device. The resonance reflection feature of the device varies linearly in a range of 680.2-737.0 nm over the length of the grating.

4.
Sci Rep ; 6: 22445, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925828

RESUMO

The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

5.
Nanotechnology ; 27(9): 095302, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26822203

RESUMO

Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

6.
Sci Rep ; 5: 18567, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26681478

RESUMO

We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. We demonstrate that the hydrogel-coated BNAs are able to sense environmental temperature variations. The phase transition of hydrogel leads to 16.2 nm of resonant wavelength shift for the hydrogel-coated BNAs, whereas only 3 nm for the uncoated counterpart. The response time of the device to temperature variations is only 250 ms, due to the small hydrogel thickness at the submicron scale. The demonstration of the ability of the device to tune its optical resonance in response to an environmental stimulus (here, temperature) suggests a possibility of making many other tunable plasmonic devices through the incorporation of coupled plasmonic nanostructures and various environmental-responsive hydrogels.

7.
Sci Rep ; 5: 10718, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26035288

RESUMO

In this work, the thermal and electrical transport in an individual silver nanowire is characterized down to 35 K for in-depth understanding of the strong structural defect induced electron scattering. The results indicate that, at room temperature, the electrical resistivity increases by around 4 folds from that of bulk silver. The Debye temperature (151 K) of the silver nanowire is found 36% lower than that (235 K) of bulk silver, confirming strong phonon softening. At room temperature, the thermal conductivity is reduced by 55% from that of bulk silver. This reduction becomes larger as the temperature goes down. To explain the opposite trends of thermal conductivity (κ) ~ temperature (T) of silver nanowire and bulk silver, a unified thermal resistivity (Θ ~ T/k ) is used to elucidate the electron scattering mechanism. A large residual Θ is observed for silver nanowire while that of the bulk silver is almost zero. The same Θ ~ T trend proposes that the silver nanowire and bulk silver share the similar phonon-electron scattering mechanism for thermal transport. Due to phonon-assisted electron energy transfer across grain boundaries, the Lorenz number of the silver nanowire is found much larger than that of bulk silver and decreases with decreasing temperature.

8.
Opt Lett ; 39(9): 2751-4, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784094

RESUMO

An angular spectrum analysis system was demonstrated to monitor the optical resonant mode of a photonic crystal (PC) sensor comprised of a one-dimensional grating structure. Exposed to solutions with different refractive indices or adsorbed with biomaterials, the PC sensor exhibited changes of the optical resonant modes. The developed detection system utilized a focused laser beam to detect shifts of the resonant angle, and thereby allowed a kinetic analysis of chemical absorption. Such a detection apparatus offers an adjustable angular resolution and a tunable detection range for a wide variety of refractometric sensing applications. A limit of detection of 6.57×10(-5) refractive index unit has been observed. The instrument also offers an imaging capability of rapidly characterizing low-contrast samples deposited on the PC surface with a spatial resolution of 10 µm.


Assuntos
Técnicas Biossensoriais/instrumentação , Lasers , Lentes , Fotometria/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA