Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Netw ; 174: 106215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471261

RESUMO

Deep neural networks tend to suffer from the overfitting issue when the training data are not enough. In this paper, we introduce two metrics from the intra-class distribution of correct-predicted and incorrect-predicted samples to provide a new perspective on the overfitting issue. Based on it, we propose a knowledge distillation approach without pretraining a teacher model in advance named Tolerant Self-Distillation (TSD) for alleviating the overfitting issue. It introduces an online updating memory and selectively stores the class predictions of the samples from the past iterations, making it possible to distill knowledge across the iterations. Specifically, the class predictions stored in the memory bank serve as the soft labels for supervising the samples from the same class for the current iteration in a reverse way, i.e. the correct-predicted samples are supervised with the incorrect predictions while the incorrect-predicted samples are supervised with the correct predictions. Consequently, the premature convergence issue caused by the over-confident samples would be mitigated, which helps the model to converge to a better local optimum. Extensive experimental results on several image classification benchmarks, including small-scale, large-scale, and fine-grained datasets, demonstrate the superiority of the proposed TSD.


Assuntos
Benchmarking , Conhecimento , Redes Neurais de Computação
2.
Acta Ophthalmol ; 100(2): e512-e520, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34159761

RESUMO

PURPOSE: This study aimed to determine the efficacy of a multimodal deep learning (DL) model using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images for the assessment of choroidal neovascularization (CNV) in neovascular age-related macular degeneration (AMD). METHODS: This retrospective and cross-sectional study was performed at a multicentre, and the inclusion criteria were age >50 years and a diagnosis of typical neovascular AMD. The OCT and OCTA data for an internal data set and two external data sets were collected. A DL model was developed with a novel feature-level fusion (FLF) method utilized to combine the multimodal data. The results were compared with identification performed by an ophthalmologist. The best model was tested on two external data sets to show its potential for clinical use. RESULTS: Our best model achieved an accuracy of 95.5% and an area under the curve (AUC) of 0.9796 on multimodal data inputs for the internal data set, which is comparable to the performance of retinal specialists. The proposed model reached an accuracy of 100.00% and an AUC of 1.0 for the Ningbo data set, and these performance indicators were 90.48% and an AUC of 0.9727 for the Jinhua data set. CONCLUSION: The FLF method is feasible and highly accurate, and could enhance the power of the existing computer-aided diagnosis systems. The bi-modal computer-aided diagnosis (CADx) system for the automated identification of CNV activity is an accurate and promising tool in the realm of public health.


Assuntos
Neovascularização de Coroide/diagnóstico , Aprendizado Profundo , Degeneração Macular/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Neovascularização de Coroide/etiologia , Estudos Transversais , Feminino , Humanos , Degeneração Macular/complicações , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA