Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Med (Lausanne) ; 11: 1417967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323476

RESUMO

Since the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) has been widely applied in many countries and regions for monitoring COVID-19 transmission in the population through testing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. However, the amount of virus shed by individuals over time based on the stage of infection and accurate number of infections in the community creates challenges in predicting COVID-19 prevalence in the population and interpreting WBE results. In this study, we measured SARS-CoV-2, pepper mild mottle virus (PMMoV), and human mitochondrial DNA (mtDNA) in longitudinal fecal samples collected from 42 COVID-19 patients for up to 42 days after diagnosis. SARS-CoV-2 RNA was detected in 73.1% (19/26) of inpatient study participants in at least one of the collected fecal specimens during the sampling period. Most participants shed the virus within 3 weeks after diagnosis, but five inpatient participants still shed the virus between 20 and 60 days after diagnosis. The median concentration of SARS-CoV-2 in positive fecal samples was 1.08 × 105 genome copies (GC)/gram dry fecal material. PMMoV and mtDNA were detected in 99.4% (154/155) and 100% (155/155) of all fecal samples, respectively. The median concentrations of PMMoV RNA and mtDNA in fecal samples were 1.73 × 107 and 2.49 × 108 GC/dry gram, respectively. These results provide important information about the dynamics of fecal shedding of SARS-CoV-2 and two human fecal indicators in COVID-19 patients. mtDNA showed higher positive rates, higher concentrations, and less variability between and within individuals than PMMoV, suggesting that mtDNA could be a better normalization factor for WBE results than PMMoV.

2.
PLOS Glob Public Health ; 4(8): e0002880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39163285

RESUMO

Cholera is a diarrhoeal disease caused by Vibrio cholerae (V. cholerae) bacterium, with strains belonging to serogroups 01 and 0139 causing a huge proportion of the disease. V. cholerae can contaminate drinking water sources and food through poor sanitation and hygiene. This study aimed to identify environmental routes of exposure to V. cholerae within Mukuru informal settlement in Nairobi. We collected nine types of environmental samples (drinking water, flood water, open drains, surface water, shaved ice, raw produce, street food, soil, and public latrine swabs) over 12 months. All samples were analysed for V. cholerae by culture and qPCR, then qPCR-positive samples were quantified using a V. cholerae DNA standard. Data about the frequency of contact with the environment was collected using behavioural surveys. Of the 803 samples collected, 28.5% were positive for V. cholerae by qPCR. However, none were positive for V. cholerae by culture. V. cholerae genes were detected in majority of the environmental water samples (79.3%), including open drains, flood water, and surface water, but were only detected in small proportions of other sample types. Vibrio-positive environmental water samples had higher mean V. cholerae concentrations [2490-3469 genome copies (gc) per millilitre (mL)] compared to drinking water samples (25.6 gc/mL). Combined with the behavioural data, exposure assessment showed that contact with surface water had the highest contribution to the total V. cholerae exposure among children while ingestion of municipal drinking water and street food and contact with surface water made substantial contributions to the total V. cholerae exposure for adults. Detection of V. cholerae in street food and drinking water indicates possible risk of exposure to toxigenic V. cholerae in this community. Exposure to V. cholerae through multiple pathways highlights the need to improve water and sanitation infrastructure, strengthen food hygiene practices, and roll out cholera vaccination.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39110052

RESUMO

Context: Total knee arthroplasty (TKA) and total hip arthroplasty (THA) have become well-established and standardized procedures. However, complications can easily occur, such as joint pain and swelling, due to the high trauma of surgery and intraoperative blood loss, which can affect patients' recovery. A treatment that can effectively shorten postoperative recovery time and reduce complications is key to the perioperative treatment of TKA and THA. Objective: The study aimed to evaluate the efficacy of the Rapid Rehabilitation Surgery (RRS) protocol, an enhanced recovery after surgery (ERAS) approach, for TKA and THA to substantiate its application by the current research team. Design: The research team performed a narrative review by searching the Excerpta Medica Database (Embase), the Kirkland database, the China National Knowledge Infrastructure (CNKI), the Wanfang database, and the VIP database, using the keywords rapid rehabilitation surgery, hip replacement, knee replacement, and perioperative period, and randomized controlled trials or randomized controlled trials (RCTs) or clinical trials. The team also performed a meta-analysis of the data from the studies that the search found. Setting: The study took place at Yulin No. 2 Hospital, Yulin, China. Participants: The studies included 1673 patients in six studies that conducted RCTs, including 565 patients who received ERAS and 1108 patients who received RCTS. Outcome Measures: The research team used Cochrane software for risk assessment for the included studies. For the meta-analysis, the team examined the included studies' data related: (1) to length of hospital stay, (2) to postoperative complications, (3) to blood-transfusion rate, and (4) to postoperative pain. Results: The ERAS nursing reduced the mean length of hospital stay by 2.17 days compared to that of the combined control groups from five studies (MD=-2.17, 95% CI [3.36-0.99], P < .01). In the analysis of four studies, the incidence of surgical complications was 9.1% lower in the combined intervention groups than in the combined control groups (r=0.30, 95% CI [0.10 to 0.94], P = .02). Conclusions: RRS is a safe and effective method of treating patients undergoing THA and TKA and can significantly reduce hospitalization time and postoperative complications. This approach deserves promotion.

4.
J Colloid Interface Sci ; 673: 817-825, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38906003

RESUMO

Atmospheric water harvesting through reticular materials is an innovation that has the potential to change the world. Here, this study offers a technique for creating a solar-powered hygroscopic polymer material for atmospheric water harvesting with the reticular materials. The results show that the porous hygroscopic polymer materials can achieve high performance with high vapor capture (up to ac. 28.8-49.7 mg/g at 28-38 %RH and 25  â„ƒ), rapid photothermal conversion efficiency (up to 32.2 â„ƒ within 15 min under 1000 W/m-2 light at 25 â„ƒ), a low desorption temperature (lower than 40 â„ƒ), and an effective water release rate. Besides, the material also has excellent water-retention properties, which can effectively store desorbed liquid water in polymer networks for use by vegetation during water demand periods. The strategy opens new avenues for atmospheric water-harvesting materials, which will hopefully solve the global crisis of freshwater shortages.

5.
Emerg Infect Dis ; 30(13): S21-S27, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561638

RESUMO

Institution-level wastewater-based surveillance was implemented during the COVID-19 pandemic, including in carceral facilities. We examined the relationship between COVID-19 diagnostic test results of residents in a jail in Atlanta, Georgia, USA (average population ≈2,700), and quantitative reverse transcription PCR signal for SARS-CoV-2 in weekly wastewater samples collected during October 2021‒May 2022. The jail offered residents rapid antigen testing at entry and periodic mass screenings by reverse transcription PCR of self-collected nasal swab specimens. We aggregated individual test data, calculated the Spearman correlation coefficient, and performed logistic regression to examine the relationship between strength of SARS-CoV-2 PCR signal (cycle threshold value) in wastewater and percentage of jail population that tested positive for COVID-19. Of 13,745 nasal specimens collected, 3.9% were COVID-positive (range 0%-29.5% per week). We observed a strong inverse correlation between diagnostic test positivity and cycle threshold value (r = -0.67; p<0.01). Wastewater-based surveillance represents an effective strategy for jailwide surveillance of COVID-19.


Assuntos
COVID-19 , Gastrópodes , Humanos , Animais , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Georgia/epidemiologia , Águas Residuárias , Prisões Locais , Pandemias , RNA Viral
6.
Sci Rep ; 14(1): 8357, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594511

RESUMO

To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.

7.
Int Dent J ; 74(5): 1089-1101, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38631944

RESUMO

OBJECTIVES: Investigate the geographical distribution of private dental practices in major Chinese cities and analyze the variables influencing this distribution. METHODS: This study used Python to extract various types of Point of Interest (POI) data spanning from 2016 to 2022 from the AutoNavi map. A 1km*1km grid was constructed to establish the study sample. Additional spatial pattern data, including nighttime lighting, population, and air quality data, were integrated into this grid. Global Moran's I index was used to analyze the spatial autocorrelation. The spatial lag model was used to explore the influencing factors of private dental practice distribution. RESULTS: This study reveals a specific clustering pattern for private dental practices in major Chinese cities. The primary influencing factors include nighttime lights, population density, and housing prices, suggesting that dental practices are typically concentrated in highly developed regions with dense populations and high housing costs. Additionally, we discovered that patterns vary across different metropolises, with the most pronounced clustering patterns and substantial inequalities found in the most developed areas. CONCLUSIONS: This study establishes that factors such as regional development and population density positively correlate with private dental practice. Additionally, it reveals a strong mutual correlation in the clustering of dental practices, which does not show a substantial correlation with public resources. Finally, it suggests that the spatial heterogeneity pattern implies a rising necessity to tackle inequality issues within urban areas as economic development progresses.


Assuntos
Cidades , Clínicas Odontológicas , China , Humanos , Clínicas Odontológicas/estatística & dados numéricos , Análise Espacial , Densidade Demográfica , Fatores Sociodemográficos , Prática Privada/estatística & dados numéricos
8.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459433

RESUMO

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Assuntos
Marmota , Yersinia pestis , Animais , Humanos , Tibet/epidemiologia , China/epidemiologia , Surtos de Doenças , Yersinia pestis/genética , Variação Genética
9.
Micromachines (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38542585

RESUMO

Technological advancements across various sectors are driving a growing demand for large-scale three-degree-of-freedom micro-nano positioning platforms, with substantial pressure to reduce footprints while enhancing motion range and accuracy. This study proposes a three-prismatic-revolute-revolute (3-PRR) parallel mechanism based on biomimetic variable-diameter helical flexible hinges. The resulting platform achieves high-precision planar motion along the X- and Y-axes, a centimeter-level translation range, and a rotational range of 35° around the Z-axis by integrating six variable-diameter flexible helical hinges that serve as rotational joints when actuated by three miniature linear servo drives. The drives are directly connected to the moving platform, thereby enhancing the compactness of the system. A kinematic model of the motion platform was established, and the accuracy and effectiveness of the forward and inverse kinematic solutions were validated using finite element analysis. Finally, a prototype of the 3-PRR parallel platform was fabricated, and its kinematic performance was experimentally verified visually for improved endpoint displacement detection. The assessment results revealed a maximum displacement error of 9.5% and confirmed that, judging by its favorable workspace-to-footprint ratio, the final system is significantly more compact than those reported in the literature.

10.
Int J Parasitol ; 54(2): 99-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37774810

RESUMO

The successful completion of gamete fertilization is essential for malaria parasite transmission, and this process can be targeted by intervention strategies. In this study, we identified a conserved gene (PBANKA_0813300) in the rodent malaria parasite Plasmodium berghei, which encodes a protein of 54 kDa (designated as Pbs54). Localization studies indicated that Pbs54 is associated with the plasma membranes of gametes and ookinetes. Functional studies by gene disruption showed that the Δpbs54 parasites had no defect in asexual proliferation, gametocyte development, or gametogenesis. However, the interactions between male and female gametes were significantly decreased compared with wild-type parasites. The Δpbs54 lines did not show a further reduction in zygote and ookinete numbers during in vitro culture, indicating that the defects were probably restricted to gamete fertilization. Consistent with this finding, mosquitoes fed on Δpbs54-infected mice showed a 30.1% reduction in infection prevalence and a 74.7% reduction in oocyst intensity. Cross-fertilization assay indicated that both male and female gametes were impaired in the Δpbs54 parasites. To evaluate its transmission-blocking potential, we obtained polyclonal antibodies from mice immunized with the recombinant Pbs54 (rPbs54) protein. In vitro assays showed that anti-rPbs54 sera inhibited ookinete formation by 42.7%. Our experiments identified Pbs54 as a fertility factor required for mosquito transmission and a novel candidate for a malaria transmission-blocking vaccine.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária , Animais , Feminino , Masculino , Camundongos , Anticorpos Antiprotozoários , Fertilização , Células Germinativas , Malária/prevenção & controle , Proteínas de Membrana/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes
11.
Integr Zool ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084399

RESUMO

Parasite-mediated selection is widely believed to play a crucial role in maintaining the diversity of the major histocompatibility complex (MHC) genes, which is thought to be maintained through heterozygote advantage, rare-allele advantage, and fluctuating selection. However, the relationship between parasite pressure and MHC diversity has yielded inconsistent findings. These inconsistencies may arise from the influence of environmental factors and individual variations in traits on host-parasite interactions. To address these issues, our study extensively investigated populations of striped hamsters inhabiting regions characterized by environmental heterogeneity. The primary objective was to examine the universality of parasite-mediated selection mechanisms. Our observations revealed the presence of multiple parasite infections, accompanied by spatial and temporal variations in parasite communities and infection patterns among individual hamsters. Specifically, the temperature was found to influence all four parasite indices, while the presence of gamasid mites and parasite richness decreased with increasing precipitation. We also noted significant seasonal variation in parasite dynamics. Moreover, a significant sexual dimorphism was observed with males exhibiting a considerably higher parasite burden compared to their female counterparts. Lastly, we identified the maintenance of MHC polymorphism in striped hamsters as being driven by the heterozygote advantage and fluctuating selection mechanisms. This study underscores the significance of ecological processes in comprehending host-parasite systems and highlights the necessity of considering environmental factors and individual traits when elucidating the mechanisms underlying MHC diversity mediated by parasites.

12.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019110

RESUMO

Precision manipulation is plays an increasingly crucial role in bioengineering fields such as cell injection. Due to the specificity of the operational process, which is highly susceptible and damageable by the actuated force, millimeter-level nondestructive operations are gaining more and more attention. With this, a symmetrical compliant constant-force mechanism (CCFM) is developed to provide stable and large motion stroke for damage-free precision manipulation in this paper. The mechanism design is inspired by the legs of the locust, which flexes and folds when the locust jumps. In terms of structure design, double biomimetic diamond beams are used to generate positive and negative stiffness. A crossbeam is added to the internal diamond mechanism, which flexes during movement to provide negative stiffness, while the external diamond mechanism without additional constraint provides positive stiffness. The theoretical model of this CCFM is established to analyze its force-displacement relationship, which is verified by performing finite element analysis simulations and experimental studies. Meanwhile, a parametric study is conducted to investigate the influence of the dominant design variable of the CCFM. Finally, the test results show that the CCFM can generate motion range up to 5 mm with a constant output force ∼15.2 N. The developed CCFM has potential applications in the field of manipulation techniques of cell engineering and robotics in the future.

13.
Asian Pac J Cancer Prev ; 24(11): 3851-3857, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019243

RESUMO

OBJECTIVE: The present study was aimed to investigate the APC expression, its promoter methylation status, the expression of ß-Catenin, c-Myc and Cyclin D1 and further explore their prognostic value in Hepatocellular carcinoma (HCC). PATIENTS AND METHODS: Serum samples from 90 HCC patients and 27 healthy donors were collected in this study. The methylation-specific PCR (MSP) was performed to evaluate promoter methylation status of APC gene. RT-qPCR was used to detect the mRNA expression of APC, ß-Catenin, c-Myc and Cyclin D1, meanwhile the protein expression were analyzed by Western blot. RESULTS: The positive rate of APC gene methylation in HCC patients (46.67%) was higher than healthy donors (11.11%). APC gene exhibited marked hypermethylation in the patients of TNM III-IV stage when compared to the patients of TNM I-II stage , the methylation status of APC gene was correlated with tumor size and lymph node metastasis whereas the APC gene methylation showed no relationship with the patient's sex and age. APC methylation may be associated with APC expression level, APC expression in HCC cells is silenced by aberrant promoter hypermethylation. In HCC patients with methylated APC, the mRNA and protein expression of ß-Catenin, c-Myc and Cyclin D1 were higher than the unmethylated patient subgroup and healthy donors. CONCLUTIONS: The downregulation of APC in HCC samples was associated with promoter hypermethylation. APC methylation could be used as a novel diagnostic biomarker in HCC, which was associated with regulation of Wnt/ß-Catenin signal pathway.


Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Neoplasias Hepáticas , Humanos , beta Catenina/genética , Carcinoma Hepatocelular/genética , Ciclina D1/genética , Neoplasias Hepáticas/genética , Prognóstico , RNA Mensageiro/genética , Regiões Promotoras Genéticas
14.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790500

RESUMO

Background: Noroviruses (NoVs) are a leading cause of non-bacterial gastroenteritis in young children and adults worldwide. Snow Mountain Virus (SMV) is the prototype of NoV GII genotype 2 (GII.2) that has been developed as a viral model for human challenge models, an important tool for studying pathogenesis and immune response of NoV infections and for evaluating NoV vaccine candidates. Previous studies have identified blockade antibodies that block the binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs) as a surrogate for neutralization in human Norwalk virus and GII.4 infections but little is known about SMV blockade antibodies. Methods: In this secondary data analysis study, blockade antibodies were characterized in pre-challenge and post-challenge serum samples from human subjects challenged with a new SMV inoculum. The correlation between blockade antibody geometric mean antibody titers (GMTs) and SMV-specific serum IgG/IgA GMTs were examined after stratifying the subjects by infection status. A linear mixed model was applied to test the association between HBGA blockade antibody concentrations and post-challenge days accounting for covariates and random effects. Results: Laboratory results from 33 SMV inoculated individuals were analyzed and 75.7% (25/33) participants became infected. Serum SMV-specific blockade antibodies, IgA, and IgG were all significantly different between infected and uninfected individuals beginning day 15 post-challenge. Within infected individuals, a significant correlation was observed between both IgG and IgA and blockade antibody concentration as early as day 6 post-challenge. Analysis of blockade antibody using the linear mixed model showed that infected individuals, when compared to uninfected individuals, had a statistically significant increase in blockade antibody concentrations across the post-challenge days. Among the post-challenge days, blockade antibody concentrations on days 15, 30, and 45 were significantly higher than those observed pre-challenge. The intraclass correlation coefficient (ICC) analysis indicated that the variability of blockade antibody titers is more observed between individuals rather than observations within subjects. Conclusions: These results indicate that HBGA-blockade antibody GMTs are generated after SMV challenge and the blockade antibodies were still detectable at day 45 post-challenge. These data indicate that the second generation of SMV inoculum is highly effective.

15.
Sci Rep ; 13(1): 18351, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884636

RESUMO

This article constructed a vehicle scheduling problem (VSP) with soft time windows for a certain ore company. VSP is a typical NP-hard problem whose optimal solution can not be obtained in polynomial time, and the basic particle swarm optimization(PSO) algorithm has the obvious shortcoming of premature convergence and stagnation by falling into local optima. Thus, a modified particle swarm optimization (MPSO) was proposed in this paper for the numerical calculation to overcome the characteristics of the optimization problem such as: multiple constraints and NP-hard. The algorithm introduced the "elite reverse" strategy into population initialization, proposed an improved adaptive strategy by combining the subtraction function and "ladder strategy" to adjust inertia weight, and added a "jump out" mechanism to escape local optimal. Thus, the proposed algorithm can realize an accurate and rapid solution of the algorithm's global optimization. Finally, this article made typical benchmark functions experiment and vehicle scheduling simulation to verify the algorithm performance. The experimental results of typical benchmark functions proved that the search accuracy and performance of the MPSO algorithm are superior to other algorithms: the basic PSO, the improved particle swarm optimization (IPSO), and the chaotic PSO (CPSO). Besides, the MPSO algorithm can improve an ore company's profit by 48.5-71.8% compared with the basic PSO in the vehicle scheduling simulation.

16.
J Phys Chem A ; 127(36): 7510-7517, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647565

RESUMO

The Stone-Wales defect is a well-known and significant defective structure in carbon materials, impacting their mechanical, chemical, and electronic properties. Recently, a novel metal-carbon nanomaterial named Volleyballene was discovered, characterized by a C-C bond bridging two carbon pentagons. Using first-principles calculations, a stable Stone-Wales-defective counterpart of Volleyballene, exhibiting Th symmetry, has been proposed by rotating the C-C bond by 90°. Although its binding energy per atom is slightly higher than that of Volleyballene (ΔEb = 0.009 eV/atom), implying marginally lower structural stability, it can maintain its bond structure until the effective temperature reaches about 1500 K, indicating greater thermodynamic stability. Additionally, its highest vibration frequency is 1346.2 cm-1, indicating a strong chemical bond strength. A theoretical analysis of the Sc20C60 + Sc20C60 binary systems highlights that the stable building block may be applied in potential nanoassemblies.

17.
Front Microbiol ; 14: 1215311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476666

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA monitoring in wastewater has become an important tool for Coronavirus Disease 2019 (COVID-19) surveillance. Grab (quantitative) and passive samples (qualitative) are two distinct wastewater sampling methods. Although many viral concentration methods such as the usage of membrane filtration and skim milk are reported, these methods generally require large volumes of wastewater, expensive lab equipment, and laborious processes. Methods: The objectives of this study were to compare two workflows (Nanotrap® Microbiome A Particles coupled with MagMax kit and membrane filtration workflows coupled with RNeasy kit) for SARS-CoV-2 recovery in grab samples and two workflows (Nanotrap® Microbiome A Particles and skim milk workflows coupled with MagMax kit) for SARS-CoV-2 recovery in Moore swab samples. The Nanotrap particle workflow was initially evaluated with and without the addition of the enhancement reagent 1 (ER1) in 10 mL wastewater. RT-qPCR targeting the nucleocapsid protein was used for detecting SARS-CoV-2 RNA. Results: Adding ER1 to wastewater prior to viral concentration significantly improved viral concentration results (P < 0.0001) in 10 mL grab and swab samples processed by automated or manual Nanotrap workflows. SARS-CoV-2 concentrations in 10 mL grab and Moore swab samples with ER1 processed by the automated workflow as a whole showed significantly higher (P < 0.001) results than 150 mL grab samples using the membrane filtration workflow and 250 mL swab samples using the skim milk workflow, respectively. Spiking known genome copies (GC) of inactivated SARS-CoV-2 into 10 mL wastewater indicated that the limit of detection of the automated Nanotrap workflow was ~11.5 GC/mL using the RT-qPCR and 115 GC/mL using the digital PCR methods. Discussion: These results suggest that Nanotrap workflows could substitute the traditional membrane filtration and skim milk workflows for viral concentration without compromising the assay sensitivity. The manual workflow can be used in resource-limited areas, and the automated workflow is appropriate for large-scale COVID-19 wastewater-based surveillance.

18.
Genes (Basel) ; 14(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510404

RESUMO

BACKGROUND: The major histocompatibility complex (MHC) plays a key role in the adaptive immune response to pathogens due to its extraordinary polymorphism. However, the spatial patterns of MHC variation in the striped hamster remain unclear, particularly regarding the relative contribution of the balancing selection in shaping MHC spatial variation and diversity compared to neutral forces. METHODS: In this study, we investigated the immunogenic variation of the striped hamster in four wild populations in Inner Mongolia which experience a heterogeneous parasitic burden. Our goal was to identify local adaptation by comparing the genetic structure at the MHC with that at seven microsatellite loci, taking into account neutral processes. RESULTS: We observed significant variation in parasite pressure among sites, with parasite burden showing a correlation with temperature and precipitation. Molecular analysis revealed a similar co-structure between MHC and microsatellite loci. We observed lower genetic differentiation at MHC loci compared to microsatellite loci, and no correlation was found between the two. CONCLUSIONS: Overall, these results suggest a complex interplay between neutral evolutionary forces and balancing selection in shaping the spatial patterns of MHC variation. Local adaptation was not detected on a small scale but may be applicable on a larger scale.


Assuntos
Variação Genética , Seleção Genética , Cricetinae , Variação Genética/genética , Complexo Principal de Histocompatibilidade/genética , Deriva Genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade
19.
Water Res ; 229: 119516, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379453

RESUMO

Monitoring SARS-CoV-2 in wastewater is a valuable approach to track COVID-19 transmission. Designing wastewater surveillance (WWS) with representative sampling sites and quantifiable results requires knowledge of the sewerage system and virus fate and transport. We developed a multi-level WWS system to track COVID-19 in Atlanta using an adaptive nested sampling strategy. From March 2021 to April 2022, 868 wastewater samples were collected from influent lines to wastewater treatment facilities and upstream community manholes. Variations in SARS-CoV-2 concentrations in influent line samples preceded similar variations in numbers of reported COVID-19 cases in the corresponding catchment areas. Community sites under nested sampling represented mutually-exclusive catchment areas. Community sites with high SARS-CoV-2 detection rates in wastewater covered high COVID-19 incidence areas, and adaptive sampling enabled identification and tracing of COVID-19 hotspots. This study demonstrates how a well-designed WWS provides actionable information including early warning of surges in cases and identification of disease hotspots.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral
20.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177741

RESUMO

The current technological world is growing rapidly and each aspect of life is being transformed toward automation for human comfort and reliability. With autonomous vehicle technology, the communication gap between the driver and the traditional vehicle is being reduced through multiple technologies and methods. In this regard, state-of-the-art methods have proposed several approaches for advanced driver assistance systems (ADAS) to meet the requirement of a level-5 autonomous vehicle. Consequently, this work explores the role of textual cues present in the outer environment for finding the desired locations and assisting the driver where to stop. Firstly, the driver inputs the keywords of the desired location to assist the proposed system. Secondly, the system will start sensing the textual cues present in the outer environment through natural language processing techniques. Thirdly, the system keeps matching the similar keywords input by the driver and the outer environment using similarity learning. Whenever the system finds a location having any similar keyword in the outer environment, the system informs the driver, slows down, and applies the brake to stop. The experimental results on four benchmark datasets show the efficiency and accuracy of the proposed system for finding the desired locations by sensing textual cues in autonomous vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA