Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626519

RESUMO

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Assuntos
Curcumina , DNA Metiltransferase 3A , Matriz Extracelular , Fibroblastos , Camundongos Endogâmicos C57BL , MicroRNAs , Mitocôndrias , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , DNA Metiltransferase 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Camundongos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Bleomicina , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 167: 115619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804813

RESUMO

Kurarinone, a major lavandulyl flavanone found in the roots of Sophora flavescens aiton, has been reported to exhibit anti-inflammatory and anti-oxidative activities in lipopolysaccharide (LPS)-induced macrophages; however, the effects of kurarinone on the activation of NLRP3 inflammasome and the protective effects against sepsis have not been well investigated. In this study, we aimed to investigate the impacts of kurarinone on NLRP3 inflammasome activation in lipopolysaccharide (LPS)-induced macrophages and its protective effects against sepsis in vivo. Secretion of pro-inflammatory cytokines, activation of MAPKs and NF-κB signaling pathways, formation of NLRP3 inflammasome, and production of reactive oxygen species (ROS) by LPS-induced macrophages were examined; additionally, in vivo LPS-induced endotoxemia model was used to investigate the protective effects of kurarinone in sepsis-induced damages. Our experimental results demonstrated that kurarinone inhibited the expression of iNOS and COX-2, suppressed the phosphorylation of MAPKs, attenuated the production of TNF-α, IL-6, nitric oxide (NO) and ROS, repressed the activation of the NLRP3 inflammasome, and impeded the maturation and secretion of IL-1ß and caspase-1. Furthermore, the administration of kurarinone attenuated the infiltration of neutrophils in the lung, kidneys and liver, reduced the expression of organ damage markers, and increased the survival rate in LPS-challenged mice. Collectively, our study demonstrated that kurarinone can protect against LPS-induced sepsis damage and exert anti-inflammatory effects via inhibiting MAPK/NF-κB pathways, attenuating NLRP3 inflammasome formation, and preventing intracellular ROS accumulation, suggesting that kurarinone might have potential for treating sepsis and inflammation-related diseases.


Assuntos
Inflamassomos , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
3.
Pharmaceuticals (Basel) ; 16(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37375737

RESUMO

The treatment of hyperuricemia and gout is mostly based on lowering serum uric acid levels using drugs, such as allopurinol, or increasing urinary excretion of uric acid. However, some patients still experience adverse reactions to allopurinol and turn to Chinese medicine as an alternative. Therefore, it is crucial to design a preclinical study to obtain more convincing data on the treatment of hyperuricemia and gout with Chinese medicine. This study aimed to explore the therapeutic effect of emodin, a Chinese herbal extract, in a rat model of hyperuricemia and gout. In this study, we used 36 Sprague-Dawley rats, which were randomly divided into six groups for experimentation. Hyperuricemia was induced in rats by intraperitoneal injections of potassium oxonate. The efficacy of emodin in reducing serum uric acid levels was demonstrated by comparing the positive control group with groups treated with three different concentrations of emodin. The inflammatory profiles, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α levels, were unaffected by emodin treatment. In the experimental results, it was observed that the serum uric acid concentration in the vehicle control group was 1.80 ± 1.14, while the concentrations in the moderate and high concentration emodin groups were 1.18 ± 0.23 and 1.12 ± 0.57, resulting in no significant difference in uric acid concentration between these treatment groups and the control group, indicating that emodin has a therapeutic effect on hyperuricemia. The increase in the fractional excretion of uric acid (FEUA) demonstrated that emodin promoted urinary uric acid excretion without significantly affecting the inflammatory profile. Thus, emodin reduced the serum uric acid concentration to achieve effective treatment of hyperuricemia and gout by increasing urinary excretion. These results were supported by the measured serum uric acid and FEUA levels. Our data have potential implications for the treatment of gout and other types of hyperuricemia in clinical practice.

4.
Biomedicines ; 11(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37189688

RESUMO

Varicocele is a frequently encountered urological disorder, which has a prevalence rate of 8 to 15% among healthy men. However, the incidence is higher in male patients with primary or secondary infertility, with up to 35 to 80% of varicocele cases occurring in this population. The clinical manifestations of varicocele typically include the presence of an asymptomatic mass that feels like a "bag of worms", chronic scrotal pain, and infertility. Most patients with varicocele only undergo varicocelectomy after conservative treatments have failed. Unfortunately, some patients may still experience persistent scrotal pain due to a recurrence of varicocele, the development of hydrocele, neuralgia, referred pain, ureteral lesions, or nutcracker syndrome. Therefore, clinicians should consider these conditions as potential causes of postoperative scrotal pain, and take measures to address them. Several factors can assist in predicting surgical outcomes for patients with varicocele. Clinicians should consider these factors when deciding whether to perform surgery and what type of surgical intervention to use. By doing so, they can increase the likelihood of a successful surgical outcome and minimize the risk of complications such as postoperative scrotal pain.

5.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108458

RESUMO

Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1ß production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.


Assuntos
Lipopolissacarídeos , Doenças Neurodegenerativas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo
6.
Am J Chin Med ; 51(4): 1019-1039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120705

RESUMO

Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. The majority of PCa incidences eventually progress to castration-resistant PCa (CRPC), thereby establishing an urgent need for new effective therapeutic strategies. This study aims to examine the effects of morusin, a prenylated flavonoid isolated from Morus alba L., on PCa progression and identify the regulatory mechanism of morusin. Cell growth, cell migration and invasion, and the expression of EMT markers were examined. Cycle progression and cell apoptosis were examined using flow cytometry and a TUNEL assay, while transcriptome analysis was performed using RNA-seq with results being further validated using real-time PCR and western blot. A xenograft PCa model was used to examine tumor growth. Our experimental results indicated that morusin significantly attenuated the growth of PC-3 and 22Rv1 human PCa cells; moreover, morusin significantly suppressed TGF-[Formula: see text]-induced cell migration and invasion and inhibited EMT in PC-3 and 22Rv1 cells. Significantly, morusin treatment caused cell cycle arrest at the G2/M phase and induced cell apoptosis in PC-3 and 22Rv1 cells. Morusin also attenuated tumor growth in a xenograft murine model. The results of RNA-seq indicated that morusin regulated PCa cells through the Akt/mTOR signaling pathway, while our western blot results confirmed that morusin suppressed phosphorylation of AKT, mTOR, p70S6K, and downregulation of the expression of Raptor and Rictor in vitro and in vivo. These results suggest that morusin has antitumor activities on regulating PCa progression, including migration, invasion, and formation of metastasis, and might be a potential drug for CRPC treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Apoptose/genética , Movimento Celular
7.
Biol Direct ; 18(1): 9, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879344

RESUMO

BACKGROUND: Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS: We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS: Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and ß-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION: MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.


Assuntos
Cardiopatias , Síndrome Metabólica , Animais , Camundongos , Cavéolas , Caveolina 1/genética , Miócitos Cardíacos , Síndrome Metabólica/etiologia , Dieta Ocidental , Células Endoteliais , Remodelação Ventricular , Lipídeos
8.
Phytomedicine ; 110: 154597, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603340

RESUMO

BACKGROUND: Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE: The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, ß-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS: Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/ß-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION: Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Animais , Camundongos , Humanos , Masculino , Transição Epitelial-Mesenquimal/genética , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Caderinas/metabolismo , Neoplasias da Retina/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
9.
Biomed Pharmacother ; 156: 113929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411619

RESUMO

Bladder cancer is one of the most common malignancies of the male genitourinary urinary system. Protodioscin is a steroidal saponin with anti-cancer effects on several types of cancers; however, the anti-cancer activities of protodioscin on bladder cancer have not yet been investigated. Therefore, we aimed to examine the anti-cancer effects of protodioscin on bladder cancer. Two types of bladder cancer cell lines, non-muscle-invasive 5637 cells and muscle-invasive T24 cells, were used to evaluate the effects of protodioscin on cell growth, migration, invasion and epithelial-mesenchymal transition(EMT) marker expressions. Transcriptome analysis was performed by RNA-seq and validated using real-time PCR and western blot; additionally, an in vivo xenograft animal model was established and the anti-tumor effects of protodioscin were tested. Our results demonstrated that protodioscin inhibited cell proliferation, migration, motility and invasion on 5637 and T24 cells. Additionally, protodioscin also induced cell apoptosis and arrested the progression of cell cycle at G2 phase in bladder cancer cells. Moreover, protodioscin inhibited EMT through increased protein expression of E-cadherin and decreased protein expression of N-cadherin and vimentin. RNA-seq analysis indicated that protodioscin regulated mitogen-activated protein kinase(MAPK) and phosphoinositide 3-kinases(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR) signaling pathways as further verified by Western blot. Furthermore, protodioscin significantly inhibited tumor growth in vivo. Our results indicated that protodioscin inhibits cell growth, migration and invasion and induces apoptosis and G2 phase cell cycle arrest by activated p38 and JNK signaling pathways in bladder cancer cells, suggesting that protodioscin could be an effective agent for bladder cancer treatment.


Assuntos
Saponinas , Neoplasias da Bexiga Urinária , Humanos , Masculino , Animais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Movimento Celular , Apoptose , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Mamíferos
10.
J Inflamm Res ; 15: 5347-5359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131784

RESUMO

Purpose: Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods: BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1ß was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results: Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1ß, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion: Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.

11.
Life (Basel) ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013429

RESUMO

Approximately 1 in 20 people develops kidney stones at some point in their life. Although the surgical removal of stones is common, the recurrence rate remains high and it is therefore important to prevent the occurrence of kidney stones. We chose Astragalus membranaceus (AM), which is a traditional Chinese medicine, to study the prevention of urolithiasis using a Drosophila model based on our previous screening of traditional Chinese herbs. Wild-type Drosophila melanogaster Canton-S adult fruit flies were used in this study. Ethylene glycol (EG, 0.5%) was added to food as a lithogenic agent. The positive control agent (2% potassium citrate (K-citrate)) was then compared with AM (2, 8, and 16 mg/mL). After 21 days, the fruit flies were sacrificed under carbon dioxide narcotization, and the Malpighian tubules were dissected, removed, and processed for polarized light microscopy examination to observe calcium oxalate (CaOx) crystallization. Then, the ex vivo dissolution of crystals in the Malpighian tubules was compared between K-citrate and AM. Survival analysis of the EG, K-citrate, and AM groups was also performed. Both 2% K-citrate and AM (16 mg/mL) significantly inhibited EG-induced CaOx crystal formation. Mean lifespan was significantly reduced by the administration of EG, and the results were significantly reversed in the AM (8 and 16 mg/mL) groups. However, AM extract did not directly dissolve CaOx crystals in Drosophila Malpighian tubules ex vivo. In conclusion, AM extract decreased the ratio of CaOx crystallization in the Malpighian tubules and significantly ameliorated EG-induced reduction of lifespan. AM prevented CaOx crystal formation in the Drosophila model.

12.
Eur J Pharmacol ; 923: 174929, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364071

RESUMO

3-bromopyruvic acid (3-BP), a small molecule alkylating agent, has been emerged as a glycolytic inhibitor with anticancer activities. However, the effects of 3-BP on the growth and metastasis in prostate cancer have not been well investigated. Here we investigated the anti-cancer effects of 3-BP on prostate cancer in vitro and in vivo. Cell growth, apoptosis, migration, motility, and invasion were examined. The tumor growth ability was determined using a xenograft murine model. Transcriptome analysis using RNA-seq was performed to explore the mechanism of action of 3-BP. Our experimental results showed that 3-BP effectively inhibits prostate cancer cell growth, especially in castration-resistant prostate cancer (CRPC) cells. Moreover, 3-BP induces apoptosis and suppresses cell migration, motility, epithelial-mesenchymal transition (EMT), and invasion in CRPC cells. In addition, 3-BP also attenuates tumor growth in a xenograft murine model. Through transcriptome analysis using RNA-seq, 3-BP significantly regulates the cell cycle pathway and decreases the expression of downstream cycle cycle-associated genes in CRPC cells. The results of cell cycle analysis indicated that 3-BP arrests cell cycle progression at G2/M in CRPC cells. These results suggest that 3-BP has the potential in inhibiting CRPC progression and might be a promising drug for CRPC treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Piruvatos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680582

RESUMO

The accumulation of unknown polymorphic composites in the endocardium damages the endocardial endothelium (EE). However, the composition and role of unknown polymorphic composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite deposition during endocardium damage and HF progression. Adult male Sprague-Dawley rats were divided into two HF groups-angiotensin II-induced HF and left anterior descending artery ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements in deposits were examined. HF progression reduced the expression of CD31 in the endocardium, impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocardial surface showed the accumulation of unknown polymorphic composites. In the animal HF model, especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N in the deposited composites were significantly higher than those of the other groups. The deposited composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was significantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT was accompanied by polymorphic composites of different shapes and elemental compositions, which further damage and deteriorate heart function.

14.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681270

RESUMO

Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.

15.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638915

RESUMO

Pulmonary artery hypertension (PAH) pathology involves extracellular matrix (ECM) remodeling in cardiac tissues, thus promoting cardiac fibrosis progression. miR-29a-3p reportedly inhibits lung progression and liver fibrosis by regulating ECM protein expression; however, its role in PAH-induced fibrosis remains unclear. In this study, we aimed to investigate the role of miR-29a-3p in cardiac fibrosis progression in PAH and its influence on ECM protein thrombospondin-2 (THBS2) expression. The diagnostic and prognostic values of miR-29a-3p and THBS2 in PAH were evaluated. The expressions and effects of miR-29a-3p and THBS2 were assessed in cell culture, monocrotaline-induced PAH mouse model, and patients with PAH. The levels of circulating miR-29a-3p and THBS2 in patients and mice with PAH decreased and increased, respectively. miR-29a-3p directly targets THBS2 and regulates THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis. The circulating levels of miR-29a-3p and THBS2 were correlated with PAH diagnostic parameters, suggesting their independent prognostic value. miR-29a-3p targeted THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis, indicating miR-29a-3p acts as a messenger with promising therapeutic effects.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Miocárdio/patologia , Hipertensão Arterial Pulmonar/genética , Trombospondinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Masculino , Camundongos , MicroRNAs/sangue , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Proteômica/métodos , Hipertensão Arterial Pulmonar/metabolismo , Trombospondinas/metabolismo , Adulto Jovem
16.
Sci Rep ; 11(1): 18514, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531501

RESUMO

Amantadine hydrochloride (HCl) is commonly prescribed for treating influenza A virus infection and Parkinson's disease. Recently, several studies have indicated that the use of amantadine HCl is associated with corneal edema; however, the cytotoxic effect of amantadine HCl has not been investigated. In the present study, the effects of amantadine HCl on cell growth, proliferation, and apoptosis in bovine cornea endothelial cells, and in vitro endothelial permeability were examined. Results showed that lower doses of amantadine HCl do not affect cell growth (≤ 20 µΜ), whereas higher doses of amantadine HCl inhibits cell growth (≥ 50 µΜ), induces apoptosis (2000 µΜ), increases sub-G1 phase growth arrest (2000 µΜ), causes DNA damage (≥ 1000 µΜ), and induces endothelial hyperpermeability (≥ 1000 µΜ) in bovine cornea endothelial cells; additionally, we also found that amantadine HCl attenuates the proliferation (≥ 200 µΜ) and arrests cell cycle at G1 phase (≥ 200 µΜ) in bovine cornea endothelial cells. In the present study, we measured the cytotoxic doses of amantadine HCl on cornea endothelial cells, which might be applied in evaluating the association of corneal edema.


Assuntos
Amantadina/toxicidade , Antivirais/toxicidade , Córnea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Corneano/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bovinos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas
17.
Toxins (Basel) ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564598

RESUMO

Zearalenone (ZEA) is a mycotoxin that has several adverse effects on most mammalian species. However, the effects of ZEA on macrophage-mediated innate immunity during infection have not been examined. In the present study, bacterial lipopolysaccharides (LPS) were used to induce the activation of macrophages and evaluate the effects of ZEA on the inflammatory responses and inflammation-associated signaling pathways. The experimental results indicated that ZEA suppressed LPS-activated inflammatory responses by macrophages including attenuating the production of proinflammatory mediators (nitric oxide (NO) and prostaglandin E2 (PGE2)), decreased the secretion of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6), inhibited the activation of c-Jun amino-terminal kinase (JNK), p38 and nuclear factor-κB (NF-κB) signaling pathways, and repressed the nucleotide-binding and oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. These results indicated that mycotoxin ZEA attenuates macrophage-mediated innate immunity upon LPS stimulation, suggesting that the intake of mycotoxin ZEA-contaminated food might result in decreasing innate immunity, which has a higher risk of adverse effects during infection.


Assuntos
Imunidade Inata/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Zearalenona/imunologia , Zearalenona/metabolismo , Zearalenona/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Micotoxinas/imunologia , Micotoxinas/metabolismo , Micotoxinas/toxicidade
18.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207356

RESUMO

Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1ß production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1ß, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.

19.
Front Pharmacol ; 12: 652860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045963

RESUMO

Zerumbone is a natural product isolated from the pinecone or shampoo ginger, Zingiber zerumbet (L.) Smith, which has a wide range of pharmacological activities, including anti-inflammatory effects. However, the effects of zerumbone on activation of the NLRP3 inflammasome in macrophages have not been examined. This study aimed to examine the effects of zerumbone on LPS-induced inflammatory responses and NLRP3 inflammasome activation using murine J774A.1 cells, murine peritoneal macrophages, and murine bone marrow-derived macrophages. Cells were treated with zerumbone following LPS or LPS/ATP treatment. Production of nitric oxide (NO) was measured by Griess reagent assay. The levels of IL-6, TNF-α, and IL-1ß secretion were analyzed by ELISA. Western blotting analysis was performed to determine the expression of inducible NO synthase (iNOS), COX-2, MAPKs, and NLRP3 inflammasome-associated proteins. The activity of NF-κB was determined by a promoter reporter assay. The assembly of NLRP3 was examined by immunofluorescence staining and observed by confocal laser microscopy. Our experimental results indicated that zerumbone inhibited the production of NO, PGE2 and IL-6, suppressed the expression of iNOS and COX-2, repressed the phosphorylation of ERK, and decreased the activity of NF-κB in LPS-activated J774A.1 cells. In addition, zerumbone suppressed the production of IL-1ß and inhibited the activity of NLRP3 inflammasome in LPS/ATP- and LPS/nigericin-activated J774A.1 cells. On the other hand, we also found that zerumbone repressed the production of NO and proinflammatory cytokines in LPS-activated murine peritoneal macrophages and bone marrow-derived macrophages. In conclusion, our experimental results demonstrate that zerumbone effectively attenuates the LPS-induced inflammatory response in macrophages both in vitro and ex vivo by suppressing the activation of the ERK-MAPK and NF-κB signaling pathways as well as blocking the activation of the NLRP3 inflammasome. These results imply that zerumbone may be beneficial for treating sepsis and inflammasome-related diseases.

20.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807275

RESUMO

High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in regulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipodia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phosphorylation and colocalization was determined using immunostaining and co-immunoprecipitation assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution), promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphorylation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions were positively correlated and exhibited poor prognosis and survival in patients with lung cancer. Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.


Assuntos
Dinaminas/metabolismo , Proteína HMGB1/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Dinaminas/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Proteínas HMGB/metabolismo , Proteína HMGB1/fisiologia , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos SCID , Microscopia Confocal/métodos , Mitocôndrias/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Fosforilação , Pseudópodes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA