Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Cell Biol Int ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001618

RESUMO

Transfer RNA-derived fragments (tRFs) represent a novel class of non-coding RNA transcripts that possess specific biological functions. However, the involvement of tRFs in retinal microvascular diseases remains poorly understood. In this study, we aimed to reveal whether modulation of tRF-30 expression could attenuate pathological retinal neovascular diseases. Our findings demonstrate a significant upregulation of tRF-30 expression levels in both in vivo models of diabetic retinopathy (DR) and in vitro endothelial sprouting models. Conversely, inhibition of tRF-30 expression suppressed the formation of abnormal neovascularization in the retina in vivo, while reducing the proliferation and migration activity of retinal vascular endothelial cells in vitro. We also found that tRF-30 modulates retinal neovascularization through the tRF-30/TRIB3/signal transducer and activated transcription 3 signaling pathway. Furthermore, we validated a significant upregulation of tRF-30 expression levels in the vitreous humor of DR patients, with high levels of both validity and specificity in diagnostic testing. Collectively, our findings highlight a pro-angiogenic role for tRF-30 in DR. Intervening in the tRF-30 signaling pathway may represent a promising prevention and treatment strategy for retinal angiogenesis.

3.
J Biomed Res ; : 1-12, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38808557

RESUMO

The retinal pigment epithelium (RPE) is fundamental to sustaining retinal homeostasis. RPE abnormality leads to visual defects and blindness, including age-related macular degeneration (AMD). Although breakthroughs have been made in the treatment of neovascular AMD, effective intervention for atrophic AMD is largely absent. The inadequate knowledge of RPE pathology is hindered by a lack of patient RPE datasets, especially at the single-cell resolution. In this study, we delved into a large-scale single-cell resource of AMD donors in which RPE cells were occupied in a substantial proportion. Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD. Both in vivo and in vitro models revealed that carboxypeptidase X, M14 family member 2 (CPXM2) was specifically expressed in the RPE cells of atrophic AMD, which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells. Additionally, silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model. Thus, our results demonstrate that CPXM2 plays a crucial role in regulating atrophic AMD and may serve as a potential therapeutic target for atrophic AMD.

4.
Heliyon ; 10(9): e30786, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774075

RESUMO

Objective: Oxidative stress-induced retinal neurodegenerative changes are among the pathological alterations observed in diabetic retinopathy. Resveratrol (RSV), a polyphenolic compound with diverse pharmacological effects, has shown preventive qualities in several neurodegenerative illnesses, including anti-inflammatory, anti-aging, and antioxidant benefits. However, its therapeutic efficacy in diabetic retinal neurodegeneration has not yet been thoroughly elucidated. Our study aimed to explore the protective mechanisms and therapeutic benefits of RSV on diabetic retinal neurodegeneration alterations. Materials and methods: Using streptozotocin, we created a diabetic mouse model and conducted visual electrophysiological examinations on mice from the normal group, diabetic group, and diabetic group treated with RSV. Retinas were harvested for histological staining. Additionally, primary retinal ganglion cells cultured in high glucose conditions were used to assess malondialdehyde (MDA) levels and superoxide dismutase (SOD) levels upon siRNA-mediated nuclear factor erythroid 2-related factor 2 (Nrf2) interference. Protein levels of Nrf-2, heme oxygenase-1 (HO-1), and transcriptional levels of them were also measured. Results: We demonstrated that RSV significantly improved the retinal morphology and function in the diabetic retinopathy model mice. The treated mice exhibited notable improvements in visual electrophysiology, with a significant reduction in retinal ganglion cell apoptosis. Following RSV treatment, the high glucose-cultured ganglion cells demonstrated a considerable rise in SOD levels and a substantial drop in MOD. Moreover, the protein expression of solute carrier family 7 member 11 (SLC7A11) and Nrf2 significantly increased. RT-PCR and Western blot results indicated a significant attenuation of RSV's therapeutic effects upon Nrf2 inhibition. Conclusion: Our findings suggest that RSV may reduce oxidative stress levels in the retina and inhibit retinal ganglion cell apoptosis via reducing the Nrf2/HO-1 pathway, which lessens the harm that excessive glucose causes to the retina.

5.
Exp Eye Res ; 243: 109912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670210

RESUMO

Diabetic retinopathy (DR), a most common microangiopathy of diabetes, causes vision loss and even blindness. The mechanisms of exosomal lncRNA remain unclear in the development of DR. Here, we first identifed the pro-angiogenic effect of exosomes derived from vitreous humor of proliferative diabetic retinopathy patients, where lncRNA-MIAT was enriched inside. Secondly, lncRNA-MIAT was demonstrated significantly increased in exosomes from high glucose induced human retinal vascular endothelial cell, and can regulate tube formation, migration and proliferation ability to promote angiogenesis in vitro and in vivo. Mechanistically, the pro-angiogenic effect of lncRNA-MIAT was via the lncRNA-MIAT/miR-133a-3p/MMP-X1 axis. The reduced level of lncRNA-MIAT in this axis mitigated the generation of retinal neovascular in mouse model of oxygen-induced retinopathy (OIR), providing crucial evidence for lncRNA-MIAT as a potential clinical target. These findings enhance our understanding of the role of exosomal lncRNA-MIAT in retinal angiogenesis, and propose a promising therapeutic strategy against diabetic retinopathy.


Assuntos
Retinopatia Diabética , Exossomos , MicroRNAs , RNA Longo não Codificante , Neovascularização Retiniana , Animais , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , RNA Longo não Codificante/genética
6.
Vision Res ; 220: 108388, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593635

RESUMO

The function of exosomal miRNAs (miRs) in retinal degeneration is largely unclear. We were aimed to investigate the functions of exosomes as well as their miRs derived from retinal pigment epithelial (RPE) cells following exposure to oxidative stress (OS). After the OS by lipopolysaccharide and rotenone on RPE cells, interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) were upregulated, along with the decreased mitochondrial membrane potential and upregulated oxidative damage marker 8-OH-dG in RPE cells. RPE-derived exosomes were then isolated, identified, injected into the subretinal space in mice. After subretinal injection, RPE-exosomes after OS not only induced higher ROS level and apoptotic retinal cells, but also elevated IL-1ß, IL-6 alongside TNF-α expressions among retina/RPE/choroidal complex. Next, miRs inside the exosomes were sequenced by the next generation sequencing (NGS) technology. NGS revealed that certain miRs were abundant in exosomes, while others were selectively kept by RPE cells. Further, downregulated miRs, like miR-125b-5p, miR-125a-5p, alongside miR-128-3p, and upregulated miR, such as miR-7-5p were validated byRT-qPCR. Finally, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to find the possible target genes of those selective exosomal miRs. Our results proved that the RPE-derived exosomes after OS selectively express certain miRs, providing novel insights into the pathogenesis of age-related macular degeneration (AMD) in future.


Assuntos
Exossomos , MicroRNAs , Estresse Oxidativo , Epitélio Pigmentado da Retina , Exossomos/metabolismo , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Apoptose , Regulação da Expressão Gênica/fisiologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
7.
Sci Rep ; 14(1): 3890, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365946

RESUMO

This cross-sectional study aims to investigate the prevalence and causes of visual impairment (VI) and blindness in Jiangsu Province, China in 2022 during the COVID-19 pandemic. Participants (n = 13,208, aged 18-93) underwent comprehensive ocular examinations. The prevalence and causes of binocular VI (presenting visual acuity [VA] ≥ 20/400 and < 20/63 in the better eye) and blindness (presenting VA < 20/400 in the better eye) were assessed according to the World Health Organization (WHO) criteria. The estimation of refractive error prevalence was conducted using the following classification: myopia ≤ - 0.50 diopters (D), high myopia ≤ - 6.00 D, hyperopia ≥ 0.50 D, and anisometropia ≥ 1.00 D. The overall prevalence of binocular VI and blindness was 21.04% (95% confidence interval [CI] 20.35-21.74%) and 0.47% (95% CI 0.37-0.60%). The highest prevalence of binocular VI was in the population aged 18-24 years old (46.29%, [95% CI 44.30-48.28%]), those with education at university and above (43.47%, [95% CI 41.93-45.02%]), students (54.96%, [95% CI 52.73-57.17%]). Uncorrected refractive error (URE) was the leading cause of presenting binocular VI (93.40%) and blindness (50.79%). The prevalence of myopia was 54.75% (95% CI 53.90-55.60%). Actions are needed to control URE and myopia within the adult Chinese population, with a particular emphasis on the younger, well-educated demographic.


Assuntos
COVID-19 , Miopia , Erros de Refração , Baixa Visão , Pessoas com Deficiência Visual , Adulto , Humanos , Adolescente , Adulto Jovem , Estudos Transversais , Prevalência , Pandemias , COVID-19/complicações , COVID-19/epidemiologia , Cegueira/epidemiologia , Cegueira/etiologia , Baixa Visão/epidemiologia , Erros de Refração/complicações , Erros de Refração/epidemiologia , Miopia/complicações , China/epidemiologia
8.
Exp Eye Res ; 241: 109837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382576

RESUMO

The lens is an avascular tissue, where epithelial cells (LECs) are the primary living cells. The role of LECs-derived exosomes (LEC-exos) is largely unknown. In our study, we determined the anti-angiogenic role of LEC-exos, manifested as regressed retinal neovascularization (NV) using the oxygen-induced retinopathy (OIR), and reduced choroidal NV size and pathological vascular leakage using the laser-induced choroidal neovascularization (laser-induced CNV). Furthermore, the activation and accumulation of microglia were also restricted by LEC-exos. Based on Luminex multiplex assays, the expressions of chemokines such as SCYB16/CXCL16, MCP-1/CCL2, I-TAC/CXCL11, and MIP 3beta/CCL19 were decreased after treatment with LEC-exos. Transwell assays showed that LEC-exos restricted the migration of the mouse microglia cell line (BV2 cells). After incubation with LEC-exos-treated BV2 cells, human umbilical vein endothelial cells (hUVECs) were collected for further evaluation using tube formation, Transwell assays, and 5-ethynyl-2'-deoxyuridine (EDU) assays. Using in vitro experiments, the pro-angiogenic effect of microglia was restricted by LEC-exos. Hence, it was investigated that LEC-exos attenuated ocular NV, which might attribute to the inhibition of microglial activation and accumulation.


Assuntos
Neovascularização de Coroide , Exossomos , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Microglia , Exossomos/metabolismo , Angiogênese , Neovascularização Fisiológica/fisiologia , Células Endoteliais da Veia Umbilical Humana , Neovascularização de Coroide/metabolismo
9.
Med Image Anal ; 93: 103092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325155

RESUMO

Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Humanos , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem
10.
Invest Ophthalmol Vis Sci ; 65(2): 10, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315495

RESUMO

Purpose: To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods: IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results: We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions: We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.


Assuntos
Adenina/análogos & derivados , Degeneração Macular , Síndrome de Prader-Willi , Humanos , Epitélio Pigmentado da Retina/patologia , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Degeneração Macular/metabolismo , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo
11.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
12.
Int J Biol Sci ; 20(3): 897-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250154

RESUMO

Ocular angiogenic diseases, such as proliferative diabetic retinopathy (PDR), are often characterized by pathological new vessels and fibrosis formation. Anti-vascular endothelial growth factor (VEGF) therapy, despite of its efficiency to inhibit new vessels, has limitations, including drug resistance and retinal fibrosis. Here, we identified that Gremlin1, a novel angiogenesis and fibrosis inducer, was secreted from Müller glial cells, and its expression increased in the vitreous fluid from patients with PDR. Mechanistically, Gremlin1 triggered angiogenesis by promoting endothelial-mesenchymal transition via the EGFR/RhoA/ROCK pathway. In addition, Gremlin1 activated microglia to present profibrotic and fibrogenic properties. Further, anti-Gremlin1 antibody inhibited ocular angiogenesis and microglia fibrosis in mouse models. Collectively, Gremlin1 could be a potential therapeutic target in the treatment of ocular angiogenic diseases.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Humanos , Camundongos , Transporte Biológico , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Olho , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular/genética
13.
BMC Ophthalmol ; 23(1): 485, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008718

RESUMO

BACKGROUND: This study aimed to identify an initial screening tool for congenital ectopia lentis (CEL) by comparing ocular biological parameters in children with myopia. METHODS: A retrospective case-control study was conducted at one tertiary referral centre, from October 2020 to June 2022. Axial length (AL), corneal curvature (CC), refractive astigmatism (RA), corneal astigmatism (CA), internal astigmatism (IA), the difference between the axis of RA and CA [AXIS(RA-CA)], white-to-white corneal diameter (WTW), and axial length-corneal radius ratio (AL/CR) were compared in 28 eyes of CEL patients, and 60 eyes of myopic patients matched for age and refraction. The spherical equivalent of each eye was < -3.00 D. Area under the curve (AUC) of the receiver operating characteristic curves were calculated. RESULTS: The differences in RA, AL, mean keratometry (Kmed), maximum keratometry (Kmax), minimum keratometry (Kmin), CA, IA, AXIS(RA-CA), WTW, and AL/CR between the CEL and myopic groups were statistically significant (p < 0.05; p < 0.001; p < 0.001; p < 0.001; p < 0.001; p < 0.05; p < 0.001; p < 0.001; p < 0.001; p < 0.001, respectively). In logistic regression analysis RA, IA, AXIS(RA-CA), and AL/CR were significantly associated with CEL (p < 0.05). AUCs for RA, IA, AXIS(RA-CA), and AL/CR were 0.694, 0.853, 0.814, and 0.960, respectively. AUCs for AL/CR in SE< -6.00 D subgroup was 0.970, and 0.990 in -6.00 D ≤ SE < -3.00 D group. An AL/CR < 3.024 was the optimal cut-off point differentiating the CEL and control groups (sensitivity, 92.9%; specificity, 88.30%). CONCLUSIONS: A smaller AL/CR could identify CEL in children with myopia. An AL/CR cut-off value of 3.024 may be the most sensitive and specific parameter for the differential diagnosis of CEL in patients with mild to high myopia.


Assuntos
Astigmatismo , Ectopia do Cristalino , Miopia , Humanos , Pré-Escolar , Ectopia do Cristalino/diagnóstico , Ectopia do Cristalino/complicações , Astigmatismo/diagnóstico , Astigmatismo/complicações , Estudos Retrospectivos , Estudos de Casos e Controles , Refração Ocular , Córnea , Miopia/diagnóstico , Miopia/complicações
14.
FASEB J ; 37(10): e23192, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37682530

RESUMO

Abnormal ocular neovascularization, a major pathology of eye diseases, leads to severe visual loss. The role of lens epithelial cell (LEC)-derived exosomes (Lec-exo) is largely unknown. Thus, we aimed to investigate whether Lec-exo can inhibit abnormal ocular neovascularization and explore the possible mechanisms. In our study, we proved the first evidence that exosomes derived from LECs attenuated angiogenesis in both oxygen-induced retinopathy and laser-induced choroidal neovascularization mice models. Further in vitro experiments proved that Lec-exo inhibited proliferation, migration, and tube formation capability of human umbilical vein endothelial cells in high glucose condition. Further high-throughput miRNAs sequencing analysis detected that miR-146a-5p was enriched in Lec-exo. Mechanistically, exosomal miR-146a-5p was delivered to endothelial cells and bound to the NRAS coding sequence, which subsequently inactivated AKT/ERK signaling pathway. We successfully elucidated the function of Lec-exo in inhibiting abnormal ocular neovascularization, which may offer a promising strategy for treatment of abnormal ocular neovascularization.


Assuntos
Neovascularização de Coroide , Exossomos , MicroRNAs , Humanos , Animais , Camundongos , Células Epiteliais , Neovascularização de Coroide/genética , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética
15.
Int J Ophthalmol ; 16(9): 1424-1430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724263

RESUMO

AIM: To predict cutting formula of small incision lenticule extraction (SMILE) surgery and assist clinicians in identifying candidates by deep learning of back propagation (BP) neural network. METHODS: A prediction program was developed by a BP neural network. There were 13 188 pieces of data selected as training validation. Another 840 eye samples from 425 patients were recruited for reverse verification of training results. Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured. RESULTS: After training 2313 epochs, the predictive SMILE cutting formula BP neural network models performed best. The values of mean squared error and gradient are 0.248 and 4.23, respectively. The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994. The final error accuracy of the BP neural network is -0.003791±0.4221102 µm. CONCLUSION: With the help of the BP neural network, the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately. Combined with corneal parameters and refraction of patients, the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery.

16.
Cell Rep ; 42(7): 112779, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436898

RESUMO

Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neovascularização de Coroide , Degeneração Macular , Animais , Camundongos , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
17.
J Biomed Res ; 37(5): 367-381, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37366063

RESUMO

Age-related macular degeneration (AMD) causes irreversible blindness in people aged over 50 worldwide. The dysfunction of the retinal pigment epithelium is the primary cause of atrophic AMD. In the current study, we used the ComBat and Training Distribution Matching method to integrate data obtained from the Gene Expression Omnibus database. We analyzed the integrated sequencing data by the Gene Set Enrichment Analysis. Peroxisome and tumor necrosis factor-α (TNF-α) signaling and nuclear factor kappa B (NF-κB) were among the top 10 pathways, and thus we selected them to construct AMD cell models to identify differentially expressed circular RNAs (circRNAs). We then constructed a competing endogenous RNA network, which is related to differentially expressed circRNAs. This network included seven circRNAs, 15 microRNAs, and 82 mRNAs. The Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs in this network showed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway was a common downstream event. The results of the current study may provide insights into the pathological processes of atrophic AMD.

18.
Diabetes ; 72(9): 1307-1319, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347724

RESUMO

Diabetic retinopathy (DR), one of the most common microangiopathic complications in diabetes, causes severe visual damage among working-age populations. Retinal vascular endothelial cells, the key cell type in DR pathogenesis, are responsible for abnormal retinal angiogenesis in advanced stages of DR. The roles of exosomes in DR have been largely unknown. In this study, we report the first evidence that exosomes derived from the vitreous humor of patients with proliferative DR (PDR-exo) promote proliferation, migration, and tube formation of human retinal vascular endothelial cells (HRVECs). We identified long noncoding RNA (lncRNA) LOC100132249 enrichment in PDR-exo via high-throughput sequencing. This lncRNA, also mainly derived from HRVECs, promoted angiogenesis both in vitro and in vivo. Mechanistically, LOC100132249 acted as a competing endogenous sponge of miRNA-199a-5p (miR-199a-5p), thus regulating the endothelial-mesenchymal transition promoter SNAI1 via activation of the Wnt/ß-catenin pathway and ultimately resulting in endothelial dysfunction. In conclusion, our findings underscored the pathogenic role of endothelial-derived exosomes via the LOC100132249/miR-199a-5p/SNAI1 axis in DR angiogenesis and may shed light on new therapeutic strategies for future treatment of DR. ARTICLE HIGHLIGHTS: This study provides the first evidence that exosomes derived from vitreous humor from patients with proliferative diabetic retinopathy participate in angiogenesis. The findings demonstrate an unreported long noncoding RNA (lncRNA), LOC100132249, by exosomal sequencing of vitreous humor. The newly found lncRNA LOC100132249, mainly derived from endothelial cells, promotes angiogenesis via an miRNA-199a-5p/SNAI1/Wnt/ß-catenin axis in a pro-endothelial-mesenchymal transition manner.


Assuntos
Retinopatia Diabética , Exossomos , MicroRNAs , RNA Longo não Codificante , Humanos , beta Catenina/metabolismo , Proliferação de Células/genética , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Differentiation ; 132: 51-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069005

RESUMO

Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.


Assuntos
Epigênese Genética , Retina , Diferenciação Celular/genética , Células-Tronco , Neurônios
20.
Exp Eye Res ; 228: 109388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652968

RESUMO

In this study we described a new model of subretinal edema induced by single intraocular injection of DL-alpha-aminoadipic acid (DLAAA) that can be employed to study the mechanism of retinal edema and test the efficacy or potential toxicity of treatments. The progression of subretinal edema was evaluated by fundus photography, fluorescein angiography and optical coherence tomography for up to 4 weeks following DLAAA injection. The VEGF, IL-6, TNF-α, Occludin, ZO-1, AQP4, Kir4.1, GFAP and GS levels were examined in DLAAA models by immunostaining, immumohistochemical staining and Western blot. Additionally, bulk RNA-seq was used to detect the mechanism involved in DLAAA-induced retinal Müller cellular injuries. In vivo and vitro assays were further conducted to confirm the sequencing results. Subretinal edema was successfully induced by DLAAA in New Zealand White rabbits (1.29 mg/eye) and C57BL/6 mice (50 or 100 µg/eye). Our results demonstrated that the disruption of blood-retinal-barrier, including vascular hyperpermeability, inflammation, and Müller cell dysfunction of fluid clearance, was involved in subretinal edema formation in the model. Bulk RNA-seq and in vitro studies indicated the activation of p38 MAPK signaling pathway in DLAAA models. This DLAAA-induced subretinal edema model can be used for mechanistic studies or drug screening.


Assuntos
Ácido 2-Aminoadípico , Edema , Camundongos , Animais , Coelhos , Camundongos Endogâmicos C57BL , Angiofluoresceinografia/métodos , Barreira Hematorretiniana/fisiologia , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA