Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 254: 121395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452527

RESUMO

Forward osmosis (FO) membrane processes could operate without hydraulic pressures, enabling the efficient treatment of wastewaters with mitigated membrane fouling and enhanced efficiency. Designing a high-performance polyamide (PA) layer on ceramic substrates remains a challenge for FO desalination applications. Herein, we report the enhanced water treatment performance of thin-film nanocomposite ceramic-based FO membranes via an in situ grown Zr-MOF (UiO-66-NH2) interlayer. With the Zr-MOF interlayer, the ceramic-based FO membranes exhibit lower thickness, higher cross-linking degree, and increased surface roughness, leading to higher water flux of 27.38 L m-2 h-1 and lower reverse salt flux of 3.45 g m-2 h-1. The ceramic-based FO membranes with Zr-MOF interlayer not only have an application potential in harsh environments such as acidic solution (pH 3) and alkaline solution (pH 11), but also exhibit promising water and reverse salt transport properties, which are better than most MOF-incorporated PA membranes. Furthermore, the membranes could reject major species (ions, oil and organics) with rejections >94 % and water flux of 22.62-14.35 L m-2 h-1 in the treatment of actual alkaline industrial wastewater (pH 8.6). This rational design proposed in this study is not only applicable for the development of a high-quality ceramic-based FO membrane with enhanced performance but also can be potentially extended to more challenging water treatment applications.


Assuntos
Membranas Artificiais , Purificação da Água , Osmose , Águas Residuárias , Cloreto de Sódio , Cerâmica , Nylons
2.
Water Res ; 252: 121229, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324989

RESUMO

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Assuntos
Carbono , Poluentes Químicos da Água , Ibuprofeno , Metais/química , Oxirredução , Água , Eletrodos , Poluentes Químicos da Água/química
3.
Sci Total Environ ; 889: 164243, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201809

RESUMO

The simultaneous removal of hexavalent chromium (Cr(VI)) and Trichloroethylene (TCE) is facing great challenges, and the influences of the biochar on their removal by nanoscale zero-valent iron (nZVI) are poorly understood and seldom addressed in the literature. The rice straw pyrolysis at 700 °C (RS700) and their supported nZVI composites were investigated on the removal of Cr(VI) and TCE by batch experiments. The surface area and chromium bonding state of biochar supported nZVI with and without Cr(VI)-TCE loading were analyzed by Brunauer-Emmett-Teller analysis and X-ray photoelectron spectroscopy. In single pollutants system, the highest removal amounts of Cr(VI) and TCE were observed in RS700-HF-nZVI (76.36 mg/g) and RS700-HF (32.32 mg/g), respectively. The Cr(VI) removal was attributed to the reduction by Fe(II) with the adsorption by biochar primarily controlling the TCE removal. The mutual inhibition was revealed in simultaneous removal of Cr(VI) and TCE, in which the reduction of Cr(VI) was decreased due to the adsorption of Fe(II) by biochar, while the TCE adsorption was primarily inhibited owing to the blockage of surface pores of biochar supported nZVI by chromium­iron oxides. Therefore, biochar supported nZVI could be potentially used for the combined contaminated groundwater remediation, but the mutual inhibition should be evaluated.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Cromo/química , Carvão Vegetal/química , Adsorção , Compostos Ferrosos
4.
J Hazard Mater ; 444(Pt B): 130428, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435039

RESUMO

Simultaneous regulation of adsorption and photocatalytic performance of covalent triazine frameworks (CTFs) to achieve efficient control of organic pollution in water is a promising strategy, but remains a formidable challenge. Herein, pyridine linkers were innovatively introduced into pristine CTF (p-CTF) and the bidirectional electron donor-acceptor (EDA) system of contaminant-to-pyridine and pyridine-to-triazine was constructed inside. Experimental results combined with theoretical calculations revealed that pyridine units with π-deficient properties performed as electron acceptors and electron donors in the adsorption and photocatalytic processes, respectively. This special structure provided a directional pathway for electron transfer, which endowed CTFs with excellent adsorption and photocatalytic properties. Compared to p-CTF, pyridine-linked CTF (M-CTF) showed a 16-fold increase in adsorption capacity for naphthalene (973.4 µmol·g-1). Benefiting from the optimized light absorption and electron transfer form (n → π*transition), M-CTF exhibited high regeneration efficiency after adsorption of both bisphenol A (94 % after 4 cycles) and naphthalene (95 % after 4 cycles). Besides, the removal performance of organic micropollutants from natural water showed a great advantage thanks to the bidirectional EDA system. Overall, the present study provides new insights into the optimization of electronic structures for carbon-based environmental functional materials applied to organic pollution control in water.


Assuntos
Elétrons , Triazinas , Piridinas , Oxidantes , Naftalenos , Água
5.
J Colloid Interface Sci ; 630(Pt A): 430-442, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265344

RESUMO

Solar energy is becoming the most promising option to mitigate the energy crisis in the future and can be applied in renewable and economical technologies such as water splitting and pollutants degradation. The promotion of the electronic energetic level is considered an efficient method to enhance the photocatalytic performance of semiconductor materials for solar energy conversion. The highly energetic electrons exhibit a remarkable reduction ability by virtue of the electronic spin polarization, which is associated with the conduction band (CB) position. Thus, the regulation of the CB position due to the redistribution of electrons by means of defect engineering presents potential. Here, a series of titanium-based metal-organic frameworks (Ti-based MOFs) named MIL-125-m% containing different extents of defects are reported to enable photocatalytic activity under simulated sunlight and visible light illumination for remarkably enhanced photocatalytic hydrogen evolution and pollutant degradation. The experimental results illustrated that MIL-125-5 % exhibited a superior photocatalytic hydrogen evolution rate (16507.27 µmol·g-1·h-1), much higher than that of MIL-125-0 % (1.444 µmol·g-1·h-1). The excellent photocatalytic performance was attributed to upshift of d-band center, which strengthened the adsorption of H*, facilitating the H2 evolution reaction. In addition, the degradation rate of MIL-125-5 % was up to twice the original rate, for the highly energetic electrons induced by the CB flexibility alleviated the photoinduced electron recombination in defective MIL-125. The strategy of defect engineering provides a new path to control the flexibility of the CB position by electronic spin polarization on adjustable metal-organic frameworks (MOFs), and the photocatalytic effect is changed accordingly.

6.
Water Res ; 218: 118502, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490457

RESUMO

Available oxidation processes for removing Cr(III) complexes from water/wastewater usually encounter the formation of highly toxic Cr(VI) and the generation of Cr enriched waste sludge, posing challenges on the subsequent disposal. Herein, we achieve efficient removal of Cr(III)-organic complexes and simultaneous recovery of Cr from wastewater with enhanced curtailment of intermediate Cr(VI), by using an electrochemically driven peroxone (i.e., electro-peroxone) process with activated carbon fiber (ACF) electrodes. For Cr(III)-EDTA, electro-peroxone could remove ∼90% total Cr from 11.50 mg/L to 1.20 mg/L and ∼80% total organic carbon, with a strong curtailment of Cr(VI) to less than 0.2 mg/L. Additionally, the process could obtain a complete recovery of the removable Cr, of which 78.3% are enriched at ACF cathode as amorphous Cr(OH)3 deposits and the remaining 21.7% are adsorbed at the anode, thus avoiding the generation of Cr laden sludge. Mechanism studies show the electro-generated H2O2 reacts with O3 to generate abundant HO· for decomplexation, which sequentially oxidizes Cr(III) to Cr(VI), and degrades the released EDTA via stepwise decarboxylated process, as confirmed by HPLC analysis. Multiple pathways including electro-reduction, H2O2 reduction and electro-adsorption synergistically curtail and immobilize the formed intermediate Cr(VI). ACF characterizations and continuous 5-cycle experiments substantiate the excellent reusability of the ACF electrodes. Moreover, this process exhibits satisfactory effectiveness to Cr(III) complexed with other ligands (e.g., citrate and oxalate), and complexed Cr(III) in the real electroplating wastewater. We believe this study would provide an efficient and eco-friendly alternative for Cr(III) complexes removal from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cromo/química , Ácido Edético/química , Peróxido de Hidrogênio/química , Oxirredução , Esgotos , Águas Residuárias/química , Poluentes Químicos da Água/química
7.
Environ Sci Technol ; 56(10): 6699-6709, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35475353

RESUMO

The water shortage crisis, characterized by organic micropollutants (OMPs), urgently requires new materials and methods to deal with it. Although heteroatom doping has been developed into an effective method to modify carbon nanomaterials for various heterogeneous adsorption and catalytic oxidation systems, the active source regulated by intrinsic electron and spin structures is still obscure. Here, a series of nonmetallic element-doped (such as P, S, and Se) covalent triazine frameworks (CTFs) were constructed and applied to remove organic pollutants using the adsorption-photocatalysis process. The external mass transfer model (EMTM) and the homogeneous surface diffusion model (HSDM) were employed to describe the adsorption process. It was found that sulfur-doped CTF (S-CTF-1) showed a 25.6-fold increase in saturated adsorption capacity (554.7 µmol/g) and a 169.0-fold surge in photocatalytic kinetics (5.07 h-1), respectively, compared with the pristine CTF-1. A positive correlation between electron accumulation at the active site (N1 atom) and adsorption energy was further demonstrated with experimental results and theoretical calculations. Meanwhile, the photocatalytic degradation rates were greatly enhanced by forming a built-in electric field driven by spin polarization. In addition, S-CTF-1 still maintained a 98.3% removal of 2,2',4,4'-tetrahydroxybenzophenone (BP-2) micropollutants and 97.6% regeneration after six-cycle sequencing batch treatment in real water matrices. This work established a relation between electron and spin structures for adsorption and photocatalysis, paving a new way to design modified carbon nanomaterials to control OMPs.


Assuntos
Elétrons , Triazinas , Adsorção , Carbono , Triazinas/química , Água
8.
iScience ; 25(4): 104061, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345465

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent in the environment and have been detected in a variety of plants such as vegetables, cereals, and fruits. Increasing evidence shows that plants are at a risk of being adversely affected by PFASs. This review concludes that PFASs are predominantly absorbed by roots from sources in the soil; besides, the review also discusses several factors such as soil properties and the species of PFASs and plants. In addition, following uptake by root, long-chain PFASs (C ≥ 7 for PFCA and C ≥ 6 for PFSA) were preferentially retained within the root, whereas the short-chain PFASs were distributed across tissues above the ground - according to the studies. The bioaccumulation potential of PFASs within various plant structures are further expressed by calculating bioaccumulation factor (BAF) across various plant species. The results show that PFASs have a wide range of BAF values within root tissue, followed by straw, and then grain. Furthermore, owing to its high water solubility than other PFASs, PFOA is the predominant compound accumulated in both the soil itself and within the plant tissues. Among different plant groups, the potential BAF values rank from highest to lowest as follows: leaf vegetables > root vegetables > flower vegetables > shoot vegetables. Several PFAS groups such as PFOA, PFBA, and PFOS, may have an increased public health risk based on the daily intake rate (ID). Finally, future research is suggested on the possible PFASs degradation occurring in plant tissues and the explanations at genetic-level for the metabolite changes that occur under PFASs stress.

9.
J Hazard Mater ; 424(Pt B): 127444, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655880

RESUMO

Metal-free carbonaceous catalysts are receiving increasing attention in wastewater treatment. Here, nitrogen and sulfur co-doped carbon sphere catalysts (N,S-CSs900-OH) were synthesized using glucose and L-cysteine via a hydrothermal method and high temperature alkali activation. The N,S-CSs900-10%-OH exhibited excellent catalytic performance for the degradation of oxytetracycline (OTC). The degradation rate was 95.9% in 60 min, and the reaction equilibrium rate constant was 0.0735 min-1 (k0-15 min). The synergistic effect of adsorption-promoting degradation was demonstrated in the removal process of OTC. The excellent adsorption capacity of N,S-CSs900-10%-OH ensured the efficient oxidation of OTC. N,S-CSs900-10%-OH reduced the activation energy of the OTC degradation reaction (Ea=18.23 kJ/mol). Moreover, the pyrrolic N, thiophene S and carbon skeleton played an important role in the degradation of OTC based on density function theory, and the catalytic mechanism was expounded through radical and nonradical pathways. The active species involved in the reaction were O2•-, 1O2, SO4•- and •OH, of which O2•- was the primary reactive species. This study provides a new insight into the reaction mechanism for efficient treatment of organic pollutants using metal-free doped porous carbon materials.


Assuntos
Carbono , Oxitetraciclina , Adsorção , Nitrogênio , Porosidade , Enxofre
10.
Sci Total Environ ; 799: 149370, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358743

RESUMO

Taking advantage of the unique properties of reduced graphene oxide (rGO) and monoclinic crystalline titanium dioxide (TiO2(B)) nanomaterials, a novel rGO-TiO2(B) composite membrane (MrGO-TiO2(B)) was constructed by UV-light-assisted self-assembly of rGO and TiO2 on a nylon membrane. The structure of MrGO-TiO2(B) was characterized by scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Through 2D/2D self-assembly, rGO and TiO2(B) were more tightly combined, and then MrGO-TiO2(B) exhibited outstanding photocatalytic activity and an excellent methylene blue (MB) removal rate. MB was completely removed in 60 min at a constant rate of 0.042 min-1 by the MrGO-TiO2(B)/H2O2/MB system upon solar simulating Xe lamp irradiation. The synergistic effect of rGO and TiO2(B) facilitated the photocatalytic degradation of MB. TiO2(B) was excited and generated electrons and holes upon irradiation. Some electrons migrated to the surface of TiO2(B) to react with H2O2 to produce hydroxyl radicals (OH), while the other electrons migrated to the surface of rGO to react with H2O2, producing OH. In addition, a number of superoxide radicals (O2-) was detected. The holes in the valence band of TiO2(B) directly oxidized MB. The catalytic activity of MrGO-TiO2(B) toward MB degradation remained stable after four rounds of reuse. Therefore, the surface modification of a nylon membrane with TiO2(B) and rGO can serve as a promising route to fabricate photocatalytic membranes for use in the water treatment industry.


Assuntos
Nanocompostos , Nylons , Catálise , Grafite , Peróxido de Hidrogênio , Luz , Óxidos , Titânio
11.
Sci Total Environ ; 698: 134275, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505352

RESUMO

With the pollution of perfluoroalkyl substances (PFASs) became increasingly serious, the researches focused on removal of PFASs by adsorption-photocatalysis method has attracted considerable attention. To make the catalyst TiO2 disperse uniformly as quantum dots onto hydrophobic surface which was liable to attract perfluorooctanoic acid (PFOA), the surfactant sodium dodecyl sulfate (SDS) were used in this work, which not only connected the hydrophilic TiCl3 to the hydrophobic sulfonated graphene (SG) nanosheets, but also behaved as the molecular template for controlled nucleation and growth of the nanostructured TiO2. After 3D SG-TiO2 QD nanosheets were fabricated, a series of 3D SG-TiO2 QD aerogels were self-assembled by ice-template. TiO2 uniformly distributed on the surface of SG aerogel at QD size level (2-3 nm) and the size of TiO2 could be effectively regulated by concentration of SDS. Compared with aggregated TiO2 material, 3D SG-TiO2 QD aerogels owned higher adsorption and photocatalytic performance. Benefiting from the hydrophobic surface of 3D SG as well as dispersed TiO2 QDs, 3D SG-TiO2 QD could enrich PFOA instantaneously (0.0381/s) and photocatalytic decomposed them effectively (1.898 E-4/s). PFOA degradation by hole and hydroxyl radicals proceeded via a stepwise mechanism. The column made of 3D SG-TiO2 QD could remove PFOA persistently in cycles of permeation. 3D SG-TiO2 QD possessed powerful adsorption-photocatalytic decomposition capability of PFOA and steady reusability performance. The present work highlights the individual roles and synergistic effect of TiO2 QD and 3D SG for effectively removing PFOA.

12.
Environ Sci Technol ; 52(12): 7043-7053, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799731

RESUMO

Fabrication of visible-light-responsive, macroscopic photo-Fenton catalysts is crucial for wastewater treatment. Here, we report a facile fabrication method for nano-FeO(OH)/reduced graphene oxide aerogels (FeO(OH)-rGA) equipped with a stable macrostructure and a high efficiency for catalytic degradation of phenolic organics. The structure of FeO(OH)/rGA was characterized by SEM, TEM, XPS, Raman analysis. The FeO(OH) is the main constituent of ferrihydrite, which dispersed in the graphene aerogel with a particle size of ∼3 nm can efficiently activate H2O2 to generate abundant •OH. The excellent performance of the FeO(OH)/rGO aerogel was specifically exhibited by the outstanding catalyst activity, sustained mineralization and eminent reaction rate for phenolic organics. A synergy effect between FeO(OH) and graphene aerogel was observed, which came from the extensive electron transfer channels and active sites of the 3D graphene aerogel and the visible-light-activated FeO(OH) and H2O2 consistently producing •OH. The FeO(OH)/rGA could be reused for 10 cycles without a reduction in the catalytic activity and had less iron leaching, which guarantees that the active ingredient remains in the gel. Moreover, the FeO(OH)/rGA induced photo-Fenton degradation of 4-chlorophenol under near neutral pH conditions because the tight connection of FeO(OH) with the rGO aerogel results in less iron leaching and prevents the generation of Fe(OH)3. The 4-chlorophenol was completely removed in 80 min with a 0.074 min-1 rate constant in the FeO(OH)-rGA/H2O2 photo-Fenton system under visible-light irradiation, and mineralization rate was up to 80% after 6 h. Oxidative •OH can continuously attack 4-chlorophenol, 2,4,6-trichlorophenol and bisphenol A without selectivity. These results lay a foundation for highly effective and durable photo-Fenton degradation of phenolic organics at near neutral pH and sufficient activation of H2O2 for future applications.


Assuntos
Grafite , Catálise , Peróxido de Hidrogênio , Ferro , Óxidos
13.
Sci Rep ; 7: 40711, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084446

RESUMO

Graphene oxide (GO) contains not only aromatic carbon lattice but also carboxyl groups which enhanced the aqueous solubility of GO. To study the transformation of GO nanosheets in natural environments, GO aqueous dispersion was mixed with Fe3+ ions to form photoactive complex. Under visible light irradiation, Fe(III) of the complex would be reduced to Fe(II) which could subsequently reduce highly toxic Cr(VI) to Cr3+. The electron of the reduction was contributed by the decarboxylation of carboxyl groups on GO and iron was acting as a catalyst during the photoreduction. On the other hand, the consumption of carboxyl groups may convert GO to rGO which are tend to aggregate since the decreased electrostatic repulsion and the increased π-π attraction. The formed Cr3+ may be electrostatically adsorbed by the rGO sheets and simultaneously precipitated with the aggregated rGO sheets, resulting the effective removal of chromium and GO nanosheets from the aqueous environment. This study may shed a light on understanding the environmental transformation of GO and guide the treatment of Cr(VI).

14.
Chemosphere ; 95: 643-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120014

RESUMO

The simultaneous reduction of Chromium(VI) (Cr(VI)) and oxidation of cationic dyes in dispersions of Montmorillonite K10 (MK10) were examined under visible irradiation (λ>420 nm). The iron species (i.e. iron oxides, structural iron and exchangeable interlayer iron) in layered clays are active for catalytically reducing Cr(VI) by using Malachite green (MG) and Rhodamine B (RhB) as the electron donors. Molecular oxygen does not have a significant effect on clay-catalyzed Cr(VI) reduction, but is important for oxidative degradation of dye pollutants. MK10 catalysts are stable and reusable, and are therefore considered as a promising naturally-abundant material for decontamination of dye and heavy metals.


Assuntos
Silicatos de Alumínio/química , Cromo/química , Corantes/química , Ferro/análise , Bentonita , Catálise , Argila , Elétrons , Ferro/química , Modelos Químicos , Oxirredução , Rodaminas/química , Corantes de Rosanilina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA