Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Pharmaceutics ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543239

RESUMO

Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.

2.
Sci Rep ; 14(1): 4118, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374394

RESUMO

Gelatin was widely used as scaffold materials in 3D bio-printing due to its excellent bioactivity and availability and especially that their arginine-glycine-aspartic acid (RGD) sequences could efficiently promote cell adhesion and proliferation. In this study, an electroactive and 3D bio-printable hydrogel was prepared through a two-step chemical cross-linking process. Specifically, residual free amino groups of methacrylated gelatin (GelMA) were cross-linked with the aldehyde groups of dibenzaldehyde-terminated telechelic polyethylene glycol (DF-PEG) via Schiff base bonds, forming a gel at 37 °C. During the subsequent 3D bio-printing process, GelMA underwent UV curing, forming a secondary cross-linked network to the mechanical strength and stability of the printed structure. The uniform dispersion of carbon nanotubes (CNTs) in the GelMA/DF-PEG composite hydrogel significantly increased its conductivity. The optimized GelMA/DF-PEG composite hydrogel, i.e., 30% GelMA and 25% DF-PEG (G30D25-CNTs), exhibited superior bio-printability. When the content of CNTs was above 4%, the conductivity of G30D25-CNTs hydrogel exceeded 10-2 S/m, which satisfied the needs of cells for micro-current stimulation. Furthermore, the pore microstructures, swelling behavior, degradation ability and cell toxicity of G30D25-CNTs electroactive hydrogels were thoroughly evaluated. Thus, the G30D25-CNTs hydrogel with 4% MWCNTs could be considered for further application in electrical stimulation of tissue regeneration such as muscle and cardiac nerve tissue repair.


Assuntos
Bioimpressão , Nanotubos de Carbono , Gelatina/química , Polietilenoglicóis , Hidrogéis/química , Metacrilatos/química , Materiais Biocompatíveis/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
3.
Anal Chim Acta ; 1287: 342068, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182375

RESUMO

Wearable biosensors have gained huge interest due to their potential for real-time physiological information. The development of a non-invasive blood glucose device is of great interests for health monitoring in reducing the diabetes incidence. Here, we report a sandwich-structured biosensor that is designed for glucose levels detection by using sweat as the means of monitoring. The Prussian blue nanoparticles (PBNPs) and carboxylated carbon nanotubes (MWCNT-COOH) were self-assembled on the electrode to improve the electrochemical performance and as the sensor unit, glucose oxidase (GOx) was immobilized by chitosan (CS) as the reaction catalysis unit, and finally encapsulated with Nafion to ensure a stable performance. As a result, the GOx/PBNPs/MWCNT-COOH sensor displays a low detection limit (7.0 µM), high sensitivity (11.87 µA mM-1 cm-2), and excellent interference resistance for a full sweat glucose application range (0.0-1.0 mM) for both healthy individuals and diabetic patients. Additionally, the glucose sensor exhibits stable stability for two weeks and can be successfully applied to screen-printed carbon electrodes (SPCE), demonstrating its great potential for personalized medical detection and chronic disease management.


Assuntos
Glicemia , Nanotubos de Carbono , Humanos , Automonitorização da Glicemia , Glucose Oxidase , Glucose
4.
Int J Biol Macromol ; 259(Pt 2): 129337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218296

RESUMO

Mitochondrial autophagy (mitophagy) is a key physiological process that maintains the homeostasis of mitochondrial quality and quantity. Monitoring mitophagy is of great significance for detecting cellular abnormalities and developing therapeutic drugs. However, there are still very few biomarkers specifically developed for monitoring mitophagy. Here, we propose for the first time that mitochondrial G-quadruplex may serve as a biomarker for mitophagy detection, and develope a fluorescent light-up probe AMTC to monitor mitophagy in live cells. During mitophagy, AMTC fluorescence is significantly enhanced, but once mitophagy is inhibited, its fluorescence immediately decreases. The fluorescence behavior of AMTC implicates an increase in the formation of mitochondrial G-quadruplex during mitophagy. This inference has also been supported by the other two G-quadruplex probes. Taken together, this work provides a new possible biomarker and detection tool for the study of mitophagy.


Assuntos
Mitocôndrias , Mitofagia , Autofagia , Microscopia de Fluorescência , Biomarcadores
5.
Am J Nucl Med Mol Imaging ; 13(5): 195-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023815

RESUMO

Radiotracers and medical imaging equipment are the two main keys to molecular imaging. While radiotracers are of great interest to research and industry, medical imaging equipment technology is blossoming everywhere. Total-body PET/CT (TB-PET/CT) has emerged in response to this trend and is rapidly gaining traction in the fields of clinical oncology, cardiovascular medicine, inflammatory/infectious diseases, and pediatric diseases. In addition, the use of a growing number of radiopharmaceuticals in TB-PET/CT systems has shown promising results. Notably, the distinctive features of TB-PET/CT, such as its ultra-long axial field of view (194 cm), ultra-high sensitivity, and capability for low-dose tracer imaging, have enabled enhanced imaging quality while reducing the radiation dose. The envisioned whole-body dynamic imaging, delayed imaging, personalized disease management, and ultrafast acquisition for motion correction, among others, are achieved. This review highlights two key factors affecting molecular imaging, describing the rapid imaging effects of radiotracers allowed at low doses on TB-PET/CT and the improvements offered compared to conventional PET/CT.

6.
Langmuir ; 39(45): 15911-15919, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906701

RESUMO

Flexible sensors are capable of converting multiple human physiological signals into electrical signals for various applications in clinical diagnostics, athletics, and human-machine interaction. High-performance flexible strain sensors are particularly desirable for sensitive, reliable, and long-term monitoring, but current applications are still constrained due to high response threshold, low recoverability properties, and complex preparation methods. In this study, we present a stable and flexible strain sensor by a cost-effective self-assemble approach that demonstrates remarkable sensitivity (2169), ultrafast response and recovery time (112 ms), and wide dynamic response range (0-50%), as confirmed in human pulse and human-computer interaction. These excellent performances can be attributed to the design of a Polydimethylsiloxane (PDMS) substrate integrated with multiwalled carbon nanotubes (MWCNT) and graphene nanosheets (GNFs), which results in high electrical conductivity. The MWCNT serves as a bridge, connecting the GNFs to create an efficient conductive path even under a strain of 50%. We also demonstrate the strain sensor's capability in weak physiological signal pulse measurement and excellent resistance to mechanical fatigue. Moreover, the sensor shows diverse sensitivities in various tensile states with different signal patterns, making it highly suitable for full-range human monitoring and flexible wearable systems.


Assuntos
Grafite , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Grafite/química , Atenção à Saúde
7.
Macromol Biosci ; 23(10): e2300145, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37279400

RESUMO

Nanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered. To tackle the innate drawback associated with the drug loading versatility, a chitosan-based nanocapsule-in-nanofiber (NC-in-NF) structural NFM system is developed for simultaneous loading of hydrophobic and hydrophilic drugs. Oleic acid-modified chitosan is first converted into NCs by the developed mini-emulsion interfacial cross-linking procedure, followed by loading a hydrophobic anti-inflammatory agent Curcumin (Cur) into the NCs. Sequentially, the Cur-loaded NCs are successfully introduced into reductant-responsive maleoyl functional chitosan/polyvinyl alcohol NFMs containing a hydrophilic antibiotic Tetracycline hydrochloride. Having a co-loading capability for hydrophilicity distinctive agents, biocompatibility, and a controlled release property, the resulting NFMs have demonstrated the efficacy on promoting wound healing either in normal or diabetic rats.

8.
J Neural Eng ; 20(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37336205

RESUMO

Objective.Current ear electrodes often require complex placing or long stimulation durations to achieve good detection of steady-state visual evoked potential (SSVEP). To improve the practicability of ear electrode-based SSVEP-BCI (brain-computer interface) system, we developed a high-performance ear electrode that can be easily placed.Approach.Hydrogel based disposable and replaceable semi-dry electrodes are developed to improve the contact impedance and wear feeling. The best combination of electrodes for SSVEP-BCI application around the ear is optimized by assessing the electrode on volunteers, and the performance of the electrode was compared with that of the occipital electrode.Main results.The developed ear hydrogel electrode can achieve an impedance close to that of the wet electrode. Three combinations of ear electrode groups demonstrate high information transfer rate (ITR) and accuracy in SSVEP-BCI applications. According to the rating of the comprehensive assessment and BCI performance in the online session, the behind-aural electrode is the best electrode combination for recording SSVEP in the ear region. The average preparation time is the shortest, and the average impedance is the lowest. The ITR of the behind-aural electrode based SSVEP-BCI system can reach 37.5 ± 18 bits min-1. The stimulus duration was as low as 3 s compared to 5 s or 10 s in other studies.Significance.The accuracy, ITR, and wear feeling can be improved by introducing a semi-dry ear electrode and optimizing the position and the combination of ear electrode. By providing a better trade-off between performance and convenience, the ear electrode-based SSVEP-BCI promises to be used in daily life.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Eletroencefalografia/métodos , Eletrodos , Hidrogéis , Estimulação Luminosa/métodos
9.
ACS Appl Bio Mater ; 6(6): 2137-2144, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37229527

RESUMO

Iron oxide nanoparticles (IONPs) have been developed as contrast agents for T1- or T2-weighted magnetic resonance imaging (MRI) on account of their excellent physicochemical and biological properties. However, general strategies to improve longitudinal relaxivity (r1) often decrease transverse relaxivity (r2), thus synchronously strengthening the T1 and T2 enhancement effect of IONPs remains a challenge. Here, we report interface regulation and size tailoring of a group of FePt@Fe3O4 core-shell nanoparticles (NPs), which possess high r1 and r2 relaxivities. The increase of r1 and r2 is due to the enhancement of the saturation magnetization (Ms), which is a result of the strengthened exchange coupling across the core-shell interface. In vivo subcutaneous tumor study and brain glioma imaging revealed that FePt@Fe3O4 NPs can serve as a favorable T1-T2 dual-modal contrast agent. We envision that the core-shell NPs, through interface engineering, have great potential in preclinical and clinical MRI applications.


Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Gadolínio/química
10.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770843

RESUMO

The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such as Ni, Co, and Fe). In this work, high-performance NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) architectures with hollow nanocage structures as electrocatalysts for EOR were prepared via sacrificial ZIF-67 templates on CNTs. Comprehensive structural characterizations revealed that the as-synthesized NiCo-LDH@CNTs architecture displayed 3D hollow nanocages of NiCo-LDH and abundant interfacial structure between NiCo-LDH and CNTs, which could not only completely expose active sites by increasing the surface area but also facilitate the electron transfer during the electrocatalytic process, thus, improving EOR activity. Benefiting from the 3D hollow nanocages and interfacial structure fabricated by the sacrificial ZIF-67-templated method, the NiCo-LDH@CNTs-2.5% architecture exhibited enhanced electrocatalytic activity for ethanol oxidation compared to single-component NiCo-LDH, where the peak current density was 11.5 mA·cm-2, and the jf/jb value representing the resistance to catalyst poisoning was 1.72 in an alkaline environment. These results provide a new perspective on the fabrication of non-precious metal electrocatalysts for EOR in DEFCs.

11.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201770

RESUMO

Waterborne polymer-cement coatings have been widely applied in building materials due to their organic solvent-free nature, low cost, and eco-friendliness. However, these coatings can easily crack during the drying process as a result of construction environment factors, compromising the barrier performance of the coating and limiting its large-scale application. In this study, a dual-shell self-healing microcapsule was developed, which can effectively heal damage on a macro scale in waterborne polymer-cement coatings. Specifically, this dual-shell self-healing microcapsule was designed with a silica gel shell and a tannic acid-cuprum (TA-Cu) double-shell structure embedded with an epoxy resin (EP) healing agent, which was successfully fabricated via a two-step in situ polymerization. This silica gel shell self-healing microcapsules can effectively load into waterborne polymer-cement coatings. As the coating dries and solidifies, the silica gel shell of the microcapsule also becomes loose and brittle due to dehydration. This improves the mechanical initiation efficiency of the microcapsules in the coating. This study provides a novel approach for the application of self-healing microcapsules in waterborne coating systems, which can significantly reduce cracking during the drying process of waterborne polymer-cement coatings and improve the service life of the coating under complex conditions.

12.
Polymers (Basel) ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236179

RESUMO

A simple and novel method for the deposition of polypyrrole (PPy) and cellulose nanocrystal (CNC) composites on different fiber substrates by reactive ink-jet printing was proposed. PPy/CNCs composites were successfully prepared, and the surface resistance of conductive layer deposited on different fiber substrates is the least when the monomer concentration is 0.6 M. PPy/CNCs were deposited on polyethylene terephthalate (PET) to form a conductive layer by adding polyvinyl alcohol (PVA), and the optimum sintering temperature is 100 °C (monomer/PVA ratio 4.0, conductivity 0.769 S cm-1). The PPy/CNCs conductive layer deposited on the paper has the lowest surface resistance and the best adhesion, and the surface resistance of PPy/CNCs conductive layer decreases first and then increases with the increase of sulfonate concentration. Moreover, the volume of anion in sulfonate will affect the arrangement and aggregation of PPy molecular chain in composite materials. Appropriate sulfonate doping can improve the conductivity and stability of conductive paper, and the maximum conductivity is 0.813 S cm-1. Three devices based on PPy/CNCs conductive paper were proposed and fabricated. Therefore, this ink-jet printing provides a new method for the preparation of conductive materials, sensors, energy storage and electromagnetic shielding, etc.

13.
Nanoscale ; 14(41): 15384-15392, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218134

RESUMO

Nucleic acid therapy is attracting great attention in diverse clinical translations because of its therapeutic advantages. As a renowned oligonucleotide therapeutical candidate in the clinical stage, AS1411 has shown outstanding tumor suppressing effects; however, its efficient delivery to the cell nucleus is critical for its anticancer effect. Herein, we identified a multifunctional peptide drug conjugate (PDC) as a safe and efficient carrier to achieve the nuclear delivery of AS1411. This PDC consists of the cell penetration peptide RW9, an HDAC inhibitor warhead (peptide C-terminus), and 5-FU (peptide N-terminus), which can coassemble with AS1411 to form nanospheres. The PDC efficiently delivered AS1411 to the nucleus of several types of cancer cells. Moreover, it reversed the stemness of a cancer stem-like cell line. Significantly, due to the assembly-induced accumulation enhancement and retention, a safe single agent concentration of PDC showed unexpected synergy with AS1411 to augment the cancer cell suppression efficiency, exemplified by the downregulation of the stemness-related proteins and the upregulation of apoptosis-related proteins. Therefore, our work presents a powerful strategy for the nuclear delivery of nucleic acid drugs by leveraging cancer-suppressing PDC as assembly inducers, which provides a powerful combination regimen in treating cancer stem-like cells.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias , Ácidos Nucleicos , Humanos , Preparações Farmacêuticas , Oligodesoxirribonucleotídeos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral
14.
Materials (Basel) ; 15(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888288

RESUMO

In recent years, optoelectronics and related industries have developed rapidly. As typical optoelectronics devices, photodetectors (PDs) are widely applied in various fields. The functional materials in traditional PDs exhibit high hardness, and the performance of these rigid detectors is thus greatly reduced upon their stretching or bending. Therefore, the development of new flexible PDs with bendable and foldable functions is of great significance and has much interest in wearable, implantable optoelectronic devices. Graphene with excellent electrical and optical performance constructed on various flexible and rigid substrates has great potential in PDs. In this review, recent research progress on graphene-based flexible PDs is outlined. The research states of graphene conductive films are summarized, focusing on PDs based on single-component graphene and mixed-structure graphene, with a systematic analysis of their optical and mechanical performance, and the techniques for optimizing the PDs are also discussed. Finally, a summary of the current applications of graphene flexible PDs and perspectives is provided, and the remaining challenges are discussed.

15.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35334680

RESUMO

Neural microelectrode is the important bridge of information exchange between the human body and machines. By recording and transmitting nerve signals with electrodes, people can control the external machines. At the same time, using electrodes to electrically stimulate nerve tissue, people with long-term brain diseases will be safely and reliably treated. Young's modulus of the traditional rigid electrode probe is not matched well with that of biological tissue, and tissue immune rejection is easy to generate, resulting in the electrode not being able to achieve long-term safety and reliable working. In recent years, the choice of flexible materials and design of electrode structures can achieve modulus matching between electrode and biological tissue, and tissue damage is decreased. This review discusses nerve microelectrodes based on flexible electrode materials and substrate materials. Simultaneously, different structural designs of neural microelectrodes are reviewed. However, flexible electrode probes are difficult to implant into the brain. Only with the aid of certain auxiliary devices, can the implant be safe and reliable. The implantation method of the nerve microelectrode is also reviewed.

16.
Front Public Health ; 10: 1042879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684880

RESUMO

Background: Although global contraceptive coverage has increased significantly, high rates of unintended pregnancy remain the current global status quo. A comparative analysis of the differences and correlations of knowledge, attitude and practice (KAP) of sexual and reproductive health (SRH) of both partners will help guide public health work according to gender characteristics and needs, and reduce the occurrence of unintended pregnancy. Methods: A questionnaire survey of people with unintended pregnancies including women and their male partners (n = 1,275 pairs) who sought help from the Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from October 2017 to October 2021. Data were collected on sexual and reproductive health knowledge, attitudes, and practices in both partners who had unintended pregnancies. Chi-square test and Logistic regression were used to analyze the relationship between the occurrence of unintended pregnancy and KAP and its influencing factors. Paired odds ratio and McNemar's test were used to estimate the difference and concordance of KAP between partners. Results: This study included 1,275 partners with a mean age of 30.0 years. The partner's overall level of KAP is good. Compared with women, men had better knowledge (χ2 = 3.93, p = 0.047) and more active contraceptive practices (χ2 = 19.44, p < 0.001). In the analysis of partner concordance, male contraceptive intention was found to be better than female [matched pairs odds ratio (ORMP) = 2.56, p < 0.001], and the concordance of positive contraceptive practice between partners increased with male education [adjusted odds ratio (aOR) = 1.556, 95% confidence interval (CI) = 1.185-2.044, p = 0.001]. In partner-paired regression analysis, compared with good contraceptive knowledge in both men and women in the partner, the risk of negative contraceptive practice was 1.7 times (aOR = 1.721, 95% CI = 1.234-2.400, p = 0.001) higher with good contraceptive knowledge in women but negative in men, while women with poor contraceptive knowledge but men with good knowledge are 1.3 times (aOR = 1.349, 95% CI = 1.000-1.819, p = 0.05) more likely to have negative contraceptive practices. In addition, compared with partners with positive contraceptive attitudes, women with positive attitudes but negative men and women with negative attitudes but positive men had 1.7 and 1.4 times the risk of negative contraceptive practices, respectively. Conclusion: The study found that unintended pregnancy occurs mainly in young people, and the younger age of first sexual intercourse, the low education background and the lack of discussion of contraception between partners are risk factors for not taking contraceptive measures. Men's better knowledge and contraceptive practices compared with female partners, and poor male contraceptive knowledge and attitudes may lead to a higher risk of negative contraceptive practices, the results suggest that male KAP plays an important role in promoting contraceptive use and reducing unintended pregnancy.


Assuntos
Anticoncepcionais Masculinos , Gravidez não Planejada , Gravidez , Humanos , Masculino , Feminino , Adolescente , Adulto , Saúde Reprodutiva , Conhecimentos, Atitudes e Prática em Saúde , China , Anticoncepcionais
17.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34945355

RESUMO

All human activity is associated with the generation of electrical signals. These signals are collectively referred to as electrical physiology (EP) signals (e.g., electrocardiogram, electroencephalogram, electromyography, electrooculography, etc.), which can be recorded by electrodes. EP electrodes are not only widely used in the study of primary diseases and clinical practice, but also have potential applications in wearable electronics, human-computer interface, and intelligent robots. Various technologies are required to achieve such goals. Among these technologies, adhesion and stretchable electrode technology is a key component for rapid development of high-performance sensors. In last decade, remarkable efforts have been made in the development of flexible and high-adhesive EP recording systems and preparation technologies. Regarding these advancements, this review outlines the design strategies and related materials for flexible and adhesive EP electrodes, and briefly summarizes their related manufacturing techniques.

18.
Front Chem ; 9: 539678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631655

RESUMO

Temperature reflects the balance between production and dissipate of heat. Flexible temperature sensors are primary sensors used for temperature monitoring. To obtain real-time and accurate information of temperature, different flexible temperature sensors are developed according to the principle of flexible resistance temperature detector (FRTC), flexible thermocouple, flexible thermistor and flexible thermochromic, showing great potential in energy conversion and storage. In order to obtain high integration and multifunction, various flexible temperature sensors are studied and optimized, including active-matrix flexible temperature sensor, self-powered flexible temperature sensor, self-healing flexible temperature sensor and self-cleaning flexible temperature sensor. This review focuses on the structure, material, fabrication and performance of flexible temperature sensors. Also, some typical applications of flexible temperature sensors are discussed and summarized.

19.
ACS Appl Mater Interfaces ; 13(36): 42966-42976, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473476

RESUMO

Sustainable ultrathin stretchable power sources have emerged with the development of wearable electronics. They obtain energy from living organisms and the environment to drive these wearable electronics. Here, an ultrathin stretchable and triboelectric nanogenerator (TENG) improved by chargeable carbon black (CB)/thermoplastic polyurethane (TPU) composite material (CT-TENG) is proposed for mechanical energy harvesting and physiological signal sensing. The CB/TPU composite can act as both a stretchable electrode and a triboelectric layer due to the coexistence of conductive CB and dielectric TPU. The CT-TENG demonstrates good stretchability (≈646%), ultrathin thickness (≈50 µm), and a lightweight (≈62 mg). The triboelectric electrode material can be improved by postcharging treatment. With the corona charging process, the output performance of the CT-TENG was improved eightfold and reached 41 V. Moreover, the CT-TENG with a self-powered sensing capability can inspect the amplitude and frequency of different physiological movements. Consequently, the CT-TENG is promising in promoting the development of electronic skins, wearable systems of self-powered sensors, human-machine interactions, soft robotics, and artificial intelligence applications.

20.
Materials (Basel) ; 14(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406720

RESUMO

Monolayer nanosheets have gained significant attention as functional materials and also in photo/electrocatalysis due to their unique physical/chemical properties, abundance of highly exposed coordination sites, edges, and corner sites, motivating the pursuit of highly active monolayer nanosheets. NiFe-based layered double hydroxide (NiFe-LDH) nanosheets have been regarded as the most efficient electrocatalysis for oxygen evolution. However, the limited catalytic active site and the stacking layer limited the performance. Therefore, by introducing highly electroactive Co ions into monolayer NiFe-LDH, the obtained ternary NiFeCo-LDH monolayer structure possessed an increased concentration of defect (oxygen and metal vacancies), providing enough unsaturated coordination sites, benefitting the electrocatalytic water oxidation, as also explained by the density functional theory (DFT). This work reported an efficient strategy for the synthesis of ternary monolayer LDH in the application of energy conversion and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA