RESUMO
BACKGROUND: Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS: Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION: In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Glioblastoma/radioterapia , Glioblastoma/genética , Glioblastoma/patologia , Animais , Camundongos , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Análise de Célula Única , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with ß-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias Meníngeas , Meningioma , Neurofibromina 2 , Via de Sinalização Wnt , Meningioma/diagnóstico por imagem , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Humanos , Fosforilação , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animais , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Camundongos , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Feminino , Serina/metabolismo , Masculino , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genéticaAssuntos
Neoplasias Encefálicas , Glioblastoma , Inibidores de Proteassoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Inibidores de Proteassoma/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.
Assuntos
Heterogeneidade Genética , Neoplasias Meníngeas , Meningioma , Meningioma/genética , Meningioma/patologia , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Análise de Célula Única , Proliferação de Células/genética , Recidiva Local de Neoplasia/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , TranscriptomaRESUMO
Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.
Assuntos
Diferenciação Celular , Inflamação , Macrófagos , Monócitos , RNA Longo não Codificante , Transdução de Sinais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/citologia , Diferenciação Celular/genética , Monócitos/metabolismo , Monócitos/citologia , Inflamação/genética , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Sistemas CRISPR-Cas , Regulação da Expressão GênicaRESUMO
The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.
RESUMO
BACKGROUND: Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE: Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS: Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS: Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS: We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.
Assuntos
Glioblastoma , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Eficiência Biológica Relativa , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador/métodos , Hipóxia/radioterapia , Oxigênio , Dosagem RadioterapêuticaRESUMO
Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.
Assuntos
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Epigênese Genética , Reprogramação Celular/genética , Microambiente Tumoral/genéticaRESUMO
Intratumor heterogeneity underlies cancer evolution and treatment resistance1-5, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all current medical therapies6,7. High-grade meningiomas cause significant neurological morbidity and mortality and are distinguished from low-grade meningiomas by increased intratumor heterogeneity arising from clonal evolution and divergence8. Here we integrate spatial transcriptomic and spatial protein profiling approaches across high-grade meningiomas to identify genomic, biochemical, and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal, and spatial evolution of cancer. We show divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current clinical classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of sub-clonal copy number variants underlies treatment resistance. Multiplexed sequential immunofluorescence (seqIF) and spatial deconvolution of meningioma single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased cell proliferation drive meningioma recurrence. To translate these findings to clinical practice, we use epigenetic editing and lineage tracing approaches in meningioma organoid models to identify new molecular therapy combinations that target intratumor heterogeneity and block tumor growth. Our results establish a foundation for personalized medical therapy to treat patients with high-grade meningiomas and provide a framework for understanding therapeutic vulnerabilities driving intratumor heterogeneity and tumor evolution.
RESUMO
Meningiomas are the most common primary intracranial tumors and are associated with inactivation of the tumor suppressor NF2/Merlin, but one-third of meningiomas retain Merlin expression and typically have favorable clinical outcomes. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that predict meningioma outcomes and could be used to guide treatment de-escalation or imaging surveillance of Merlin-intact meningiomas are lacking. Here we integrate single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma cells, xenografts, and human patients to define biochemical mechanisms and an imaging biomarker that distinguish Merlin-intact meningiomas with favorable clinical outcomes from meningiomas with unfavorable clinical outcomes. We find Merlin drives meningioma Wnt signaling and tumor growth through a feed-forward mechanism that requires Merlin dephosphorylation on serine 13 (S13) to attenuate inhibitory interactions with ß-catenin and activate the Wnt pathway. Meningioma MRI analyses of xenografts and human patients show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC) on diffusion-weighted imaging. In sum, our results shed light on Merlin posttranslational modifications that regulate meningioma Wnt signaling and tumor growth in tumors without NF2/Merlin inactivation. To translate these findings to clinical practice, we establish a non-invasive imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with favorable meningiomas.
RESUMO
Human chromosomes are pervasively transcribed, but systematic understanding of coding and lncRNA genome function in cell differentiation is lacking. Using CRISPR interference (CRISPRi) in human induced pluripotent stem cells, we performed dual genome-wide screens - assessing 18,905 protein-coding and 10,678 lncRNA loci - and identified 419 coding and 201 lncRNA genes that regulate neural induction. Integrative analyses revealed distinct properties of coding and lncRNA genome function, including a 10-fold enrichment of lncRNA genes for roles in differentiation compared to proliferation. Further, we applied Perturb-seq to obtain granular insights into neural induction phenotypes. While most coding hits stalled or aborted differentiation, lncRNA hits were enriched for the genesis of diverse cellular states, including those outside the neural lineage. In addition to providing a rich resource (danlimlab.shinyapps.io/dualgenomewide) for understanding coding and lncRNA gene function in development, these results indicate that the lncRNA genome regulates lineage commitment in a manner fundamentally distinct from coding genes.
RESUMO
Meningiomas are the most common primary intracranial tumors. There are no effective medical therapies for meningioma patients, and new treatments have been encumbered by limited understanding of meningioma biology. Here, we use DNA methylation profiling on 565 meningiomas integrated with genetic, transcriptomic, biochemical, proteomic and single-cell approaches to show meningiomas are composed of three DNA methylation groups with distinct clinical outcomes, biological drivers and therapeutic vulnerabilities. Merlin-intact meningiomas (34%) have the best outcomes and are distinguished by NF2/Merlin regulation of susceptibility to cytotoxic therapy. Immune-enriched meningiomas (38%) have intermediate outcomes and are distinguished by immune infiltration, HLA expression and lymphatic vessels. Hypermitotic meningiomas (28%) have the worst outcomes and are distinguished by convergent genetic and epigenetic mechanisms driving the cell cycle and resistance to cytotoxic therapy. To translate these findings into clinical practice, we show cytostatic cell cycle inhibitors attenuate meningioma growth in cell culture, organoids, xenografts and patients.
Assuntos
Neoplasias Meníngeas , Meningioma , Metilação de DNA/genética , Humanos , Neoplasias Meníngeas/genética , Meningioma/genética , Neurofibromina 2/genética , ProteômicaRESUMO
OBJECTIVE: The authors' objective was to examine the safety and efficacy of salvage intracranial cesium-131 brachytherapy in combination with resection of recurrent brain tumors. METHODS: The authors conducted a retrospective chart review of consecutive patients treated with intraoperative intracranial cesium-131 brachytherapy at a single institution. Permanent suture-stranded cesium-131 seeds were implanted in the resection cavity after maximal safe tumor resection. The primary outcomes of interest were local, locoregional (within 1 cm), and intracranial control, as well as rates of overall survival (OS), neurological death, symptomatic adverse radiation effects (AREs), and surgical complication rate graded according to Common Terminology Criteria for Adverse Events version 5.0. RESULTS: Between 2016 and 2020, 36 patients received 40 consecutive cesium-131 implants for 42 recurrent brain tumors and received imaging follow-up for a median (interquartile range [IQR]) of 17.0 (12.7-25.9) months. Twenty patients (55.6%) with 22 implants were treated for recurrent brain metastasis, 12 patients (33.3%) with 16 implants were treated for recurrent atypical (n = 7) or anaplastic (n = 5) meningioma, and 4 patients (11.1%) were treated for other recurrent primary brain neoplasms. All except 1 tumor (97.6%) had received prior radiotherapy, including 20 (47.6%) that underwent 2 or more prior radiotherapy treatments and 23 (54.8%) that underwent prior resection. The median (IQR) tumor size was 3.0 (2.3-3.7) cm, and 17 lesions (40.5%) had radiographic evidence of ARE prior to salvage therapy. Actuarial 1-year local/locoregional/intracranial control rates for the whole cohort and patients with metastases and meningiomas were 91.6%/83.4%/47.9%, 88.8%/84.4%/45.4%, and 100%/83.9%/46.4%, respectively. No cases of local recurrence of any histology (0 of 27) occurred after gross-total resection (p = 0.012, log-rank test). The 1-year OS rates for the whole cohort and patients with metastases and meningiomas were 82.7%, 79.1%, and 91.7%, respectively, and the median (IQR) survival of all patients was 26.7 (15.6-36.4) months. Seven patients (19.4%) experienced neurological death from progressive intracranial disease (7 of 14 total deaths [50%]), 5 (13.9%) of whom died of leptomeningeal disease. Symptomatic AREs were observed in 9.5% of resection cavities (n = 4), of which 1 (2.4%) was grade 3 in severity. The surgical complication rate was 16.7% (n = 7); 4 (9.5%) of these patients had grade 3 or higher complications, including 1 patient (2.4%) who died perioperatively. CONCLUSIONS: Cesium-131 brachytherapy resulted in good local control and acceptable rates of symptomatic AREs and surgical complications in this heavily pretreated cohort, and it may be a reasonable salvage adjuvant treatment for this patient population.
RESUMO
Metastasis is a major contributor to cancer-associated deaths. It is characterized by a multistep process that occurs through the acquisition of molecular and phenotypic changes enabling cancer cells from a primary tumour to disseminate and colonize at distant organ sites. Over the past decade, the discovery and characterization of long noncoding RNAs (lncRNAs) have revealed the diversity of their regulatory roles, including key contributions throughout the metastatic cascade. Here, we review how lncRNAs promote metastasis by functioning in discrete pro-metastatic steps including the epithelial-mesenchymal transition, invasion and migration and organotrophic colonization, and by influencing the metastatic tumour microenvironment, often by interacting within ribonucleoprotein complexes or directly with other nucleic acid entities. We discuss well-characterized lncRNAs with in vivo phenotypes and highlight mechanistic commonalities such as convergence with the TGFß-ZEB1/ZEB2 axis or the nuclear factor-κB pathway, in addition to lncRNAs with controversial mechanisms and the influence of methodologies on mechanistic interpretation. Furthermore, some lncRNAs can help identify tumours with increased metastatic risk and spur novel therapeutic strategies, with several lncRNAs having shown potential as novel targets for antisense oligonucleotide therapy in animal models. In addition to well-characterized examples of lncRNAs functioning in metastasis, we discuss controversies and ongoing challenges in lncRNA biology. Finally, we present areas for future study for this rapidly evolving field.
Assuntos
Metástase Neoplásica/genética , RNA Longo não Codificante/fisiologia , Animais , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Invasividade Neoplásica , Microambiente TumoralRESUMO
CRISPR-mediated interference (CRISPRi), a robust and specific system for programmably repressing transcription, provides a versatile tool for systematically characterizing the function of long noncoding RNAs (lncRNAs). When used with highly parallel, lentiviral pooled screening approaches, CRISPRi enables the targeted knockdown of tens of thousands of lncRNA-expressing loci in a single screen. Here we describe the use of CRISPRi to target lncRNA loci in a pooled screen, using cell growth and proliferation as an example of a phenotypic readout. Considerations for custom lncRNA-targeting libraries, alternative phenotypic readouts, and orthogonal validation approaches are also discussed.
Assuntos
Técnicas de Silenciamento de Genes/métodos , Lentivirus/fisiologia , RNA Longo não Codificante/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Lentivirus/genética , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit highly cell type-specific expression and function, making this class of transcript attractive for targeted cancer therapy. However, the vast majority of lncRNAs have not been tested as potential therapeutic targets, particularly in the context of currently used cancer treatments. Malignant glioma is rapidly fatal, and ionizing radiation is part of the current standard-of-care used to slow tumor growth in both adult and pediatric patients. RESULTS: We use CRISPR interference (CRISPRi) to screen 5689 lncRNA loci in human glioblastoma (GBM) cells, identifying 467 hits that modify cell growth in the presence of clinically relevant doses of fractionated radiation. Thirty-three of these lncRNA hits sensitize cells to radiation, and based on their expression in adult and pediatric gliomas, nine of these hits are prioritized as lncRNA Glioma Radiation Sensitizers (lncGRS). Knockdown of lncGRS-1, a primate-conserved, nuclear-enriched lncRNA, inhibits the growth and proliferation of primary adult and pediatric glioma cells, but not the viability of normal brain cells. Using human brain organoids comprised of mature neural cell types as a three-dimensional tissue substrate to model the invasive growth of glioma, we find that antisense oligonucleotides targeting lncGRS-1 selectively decrease tumor growth and sensitize glioma cells to radiation therapy. CONCLUSIONS: These studies identify lncGRS-1 as a glioma-specific therapeutic target and establish a generalizable approach to rapidly identify novel therapeutic targets in the vast non-coding genome to enhance radiation therapy.
Assuntos
Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/terapia , RNA Longo não Codificante/antagonistas & inibidores , Adulto , Astrócitos , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Oligonucleotídeos Antissenso , Organoides , Tolerância a RadiaçãoRESUMO
Ependymomas exist within distinct genetic subgroups, but the molecular diversity within individual ependymomas is unknown. We perform multiplatform molecular profiling of 6 spatially distinct samples from an ependymoma with C11orf95-RELA fusion. DNA methylation and RNA sequencing distinguish clusters of samples according to neuronal development gene expression programs that could also be delineated by differences in magnetic resonance blood perfusion. Exome sequencing and phylogenetic analysis reveal epigenomic intratumor heterogeneity and suggest that chromosomal structural alterations may precede accumulation of single-nucleotide variants during ependymoma tumorigenesis. In sum, these findings shed light on the oncogenesis and intratumor heterogeneity of ependymoma.
Assuntos
Ependimoma/genética , Epigenômica , Perfilação da Expressão Gênica , Heterogeneidade Genética , Adulto , Diferenciação Celular/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Ependimoma/diagnóstico por imagem , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Mutação/genética , Neurônios/patologia , Filogenia , Proteínas/metabolismo , Fator de Transcrição RelA/metabolismoRESUMO
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell biology. The mechanisms by which lncRNAs function are likely numerous, and most are poorly understood. Currently, the mechanisms of functional lncRNAs include those that directly involve the lncRNA transcript, the process of their own transcription and splicing, and even underlying transcriptional regulatory elements within the genomic DNA that encodes the lncRNA As our understanding of lncRNA biology evolves, so have the methods that are utilized to elucidate their functions. In this review, we survey a collection of different methods used to modulate lncRNA expression levels for the assessment of biological function. From RNA-targeted strategies, genetic deletions, to engineered gene regulatory systems, the advantages and caveats of each method will be discussed. Ultimately, the selection of tools will be guided by which potential lncRNA mechanisms are being investigated, and no single method alone will likely be sufficient to reveal the function of any particular lncRNA.
Assuntos
Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Animais , Engenharia Genética , Genoma , Humanos , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a rare, aggressive brain tumor with no known cure. Reirradiation (reRT) at recurrence can prolong survival. The impact of irradiation may be heightened when combined with PD-1 inhibition. We describe our experience using reRT, with or without PD-1 inhibition, in a cohort of patients with recurrent DIPG. METHODS: We performed a retrospective cohort analysis of children who received reRT with or without concomitant PD-1 inhibition for recurrent DIPG at a single institution between 2005 and 2016. We compared progression-free (PFS) and overall survival (OS) between those who received reRT alone or in combination with PD-1 inhibition. We then compared reRT to a cohort of patients who did not receive reRT. RESULTS: Thirty-one patients were included (8-reRT with nivolumab; 4-reRT alone; 19-no reRT). Patients who received reRT had prolonged OS compared to no reRT (22.9 months-reRT with nivolumab; 20.4 months-reRT alone; 8.3 months-no reRT; p < 0.0001). Patients who received reRT with nivolumab vs. reRT only had slightly prolonged OS from diagnosis and from reRT (22.9 vs. 20.4 months for time from diagnosis; 6.8 vs. 6.0 months for time from reRT). All patients receiving reRT with or without nivolumab tolerated the therapy without acute or late toxicity. CONCLUSIONS: Our experience demonstrates the tolerability of reRT with concurrent PD-1 inhibition for recurrent DIPG and suggests that combination therapy may offer survival benefit. Future prospective studies are needed to confirm the benefits of this combination therapy.