Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 35-46, 2024 Jan 19.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38426691

RESUMO

Innate nucleic acid sensing is a ubiquitous and highly conserved immunological process, which is pivotal for monitoring and responding to pathogenic invasion and cellular damage, and central to host defense, autoimmunity, cell fate determination and tumorigenesis. Tyrosine phosphorylation, a major type of post-translational modification, plays a critical regulatory role in innate immune sensing pathway. Core members of nucleic acid sensing signaling pathway, such as cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1), are all subject to activity regulation triggered by tyrosine phosphorylation, thereby affecting the host antiviral defense and anti-tumor immunity under physiological or pathological conditions. This review summarizes the recent advances in research on tyrosine kinases and tyrosine phosphorylation in regulation of nucleic acid sensing. The function and potential applications of targeting tyrosine phosphorylation in anti-tumor immunity is disussed to provide insights for understanding and expanding new anti-tumor strategies.


Assuntos
Ácidos Nucleicos , Proteínas Tirosina Quinases , Imunidade Inata , Transdução de Sinais , Tirosina
2.
Sci Adv ; 10(9): eadj2102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416816

RESUMO

Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferons/metabolismo
3.
Nat Cell Biol ; 26(2): 219-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253667

RESUMO

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Lisossomos/metabolismo , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
5.
J Hepatol ; 78(4): 704-716, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574921

RESUMO

BACKGROUND & AIMS: Appropriate treatment options are lacking for hepatitis E virus (HEV)-infected pregnant women and immunocompromised individuals. Thus, we aimed to identify efficient anti-HEV drugs through high-throughput screening, validate them in vitro and in vivo (in a preclinical animal study), and elucidate their underlying antiviral mechanism of action. METHODS: Using appropriate cellular and rodent HEV infection models, we studied a critical pathway for host-HEV interactions and performed a preclinical study of the corresponding antivirals, which target proteostasis of the HEV replicase. RESULTS: We found 17 inhibitors that target HEV-HSP90 interactions by unbiased compound library screening on human hepatocytes harboring an HEV replicon. Inhibitors of HSP90 (iHSP90) markedly suppressed HEV replication with efficacy exceeding that of conventional antivirals (IFNα and ribavirin) in vitro. Mechanistically, iHSP90 treatment released the viral replicase ORF1 protein from the ORF1-HSP90 complex and triggered rapid ubiquitin/proteasome-mediated degradation of ORF1, resulting in abrogated HEV replication. Furthermore, a preclinical trial in a Mongolian gerbil HEV infection model showed this novel anti-HEV strategy to be safe, efficient, and able to prevent HEV-induced liver damage. CONCLUSIONS: In this study, we uncover a proteostatic pathway that is critical for host-HEV interactions and we provide a foundation from which to translate this new understanding of the HEV life cycle into clinically promising antivirals. IMPACT AND IMPLICATIONS: Appropriate treatment options for hepatitis E virus (HEV)-infected pregnant women and immunocompromised patients are lacking; hence, there is an urgent need for safe and effective HEV-specific therapies. This study identified new antivirals (inhibitors of HSP90) that significantly limit HEV infection by targeting the viral replicase for degradation. Moreover, these anti-HEV drugs were validated in an HEV rodent model and were found to be safe and efficient for prevention of HEV-induced liver injury in preclinical experiments. Our findings substantially promote the understanding of HEV pathobiology and pave the way for antiviral development.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Humanos , Feminino , Gravidez , Proteostase , Proteínas do Complexo da Replicase Viral , Hepatite E/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteínas Virais , Replicação Viral
6.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384137

RESUMO

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Nucleicos , Animais , Proteínas Quinases Ativadas por AMP/genética , Imunidade Inata , Antivirais , Glucose
7.
Nat Cell Biol ; 24(5): 766-782, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501370

RESUMO

Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Senescência Celular , DNA/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Biossíntese de Proteínas , Piruvato Quinase/metabolismo , Transdução de Sinais/fisiologia , eIF-2 Quinase
8.
Mol Cell ; 81(20): 4147-4164.e7, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453890

RESUMO

Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Neurofibromina 2/metabolismo , Nucleotidiltransferases/metabolismo , Evasão Tumoral , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neurofibromina 2/genética , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
PLoS Biol ; 19(2): e3001122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630828

RESUMO

The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Fosfatase 2C/metabolismo , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Colite/patologia , Humanos , Intestinos/fisiologia , Regeneração Hepática/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Proteína Fosfatase 2C/genética , Transdução de Sinais , Proteínas de Sinalização YAP
10.
Nat Commun ; 11(1): 5762, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188184

RESUMO

Occurrence of Colorectal cancer (CRC) is relevant with gut microbiota. However, role of IRF3, a key signaling mediator in innate immune sensing, has been barely investigated in CRC. Here, we unexpectedly found that the IRF3 deficient mice are hyper-susceptible to the development of intestinal tumor in AOM/DSS and Apcmin/+ models. Genetic ablation of IRF3 profoundly promotes the proliferation of intestinal epithelial cells via aberrantly activating Wnt signaling. Mechanically, IRF3 in resting state robustly associates with the active ß-catenin in the cytoplasm, thus preventing its nuclear translocation and cell proliferation, which can be relieved upon microbe-induced activation of IRF3. In accordance, the survival of CRC is clinically correlated with the expression level of IRF3. Therefore, our study identifies IRF3 as a negative regulator of the Wnt/ß-catenin pathway and a potential prognosis marker for Wnt-related tumorigenesis, and describes an intriguing link between gut microbiota and CRC via the IRF3-ß-catenin axis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Fator Regulador 3 de Interferon/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Enterócitos/metabolismo , Enterócitos/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Análise de Sobrevida , Via de Sinalização Wnt , beta Catenina/química
11.
Mol Cell ; 80(5): 810-827.e7, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33171123

RESUMO

Mitochondrial morphology shifts rapidly to manage cellular metabolism, organelle integrity, and cell fate. It remains unknown whether innate nucleic acid sensing, the central and general mechanisms of monitoring both microbial invasion and cellular damage, can reprogram and govern mitochondrial dynamics and function. Here, we unexpectedly observed that upon activation of RIG-I-like receptor (RLR)-MAVS signaling, TBK1 directly phosphorylated DRP1/DNM1L, which disabled DRP1, preventing its high-order oligomerization and mitochondrial fragmentation function. The TBK1-DRP1 axis was essential for assembly of large MAVS aggregates and healthy antiviral immunity and underlay nutrient-triggered mitochondrial dynamics and cell fate determination. Knockin (KI) strategies mimicking TBK1-DRP1 signaling produced dominant-negative phenotypes reminiscent of human DRP1 inborn mutations, while interrupting the TBK1-DRP1 connection compromised antiviral responses. Thus, our findings establish an unrecognized function of innate immunity governing both morphology and physiology of a major organelle, identify a lacking loop during innate RNA sensing, and report an elegant mechanism of shaping mitochondrial dynamics.


Assuntos
Dinaminas/metabolismo , Mitocôndrias/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Dinaminas/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Serina-Treonina Quinases/genética , RNA/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Nat Cell Biol ; 21(8): 1027-1040, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332347

RESUMO

Sensing cytosolic DNA through the cGAS-STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS-STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1-STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2-AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2-AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2-AKT1 signalling to the surveillance of cellular damage and antitumour immunity.


Assuntos
Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/imunologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptor ErbB-2/imunologia , Ubiquitinação/imunologia
13.
Sci Robot ; 4(33)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33137788

RESUMO

Small-scale soft continuum robots capable of active steering and navigation in a remotely controllable manner hold great promise in diverse areas, particularly in medical applications. Existing continuum robots, however, are often limited to millimeter or centimeter scales due to miniaturization challenges inherent in conventional actuation mechanisms, such as pulling mechanical wires, inflating pneumatic or hydraulic chambers, or embedding rigid magnets for manipulation. In addition, the friction experienced by the continuum robots during navigation poses another challenge for their applications. Here, we present a submillimeter-scale, self-lubricating soft continuum robot with omnidirectional steering and navigating capabilities based on magnetic actuation, which are enabled by programming ferromagnetic domains in its soft body while growing hydrogel skin on its surface. The robot's body, composed of a homogeneous continuum of a soft polymer matrix with uniformly dispersed ferromagnetic microparticles, can be miniaturized below a few hundreds of micrometers in diameter, and the hydrogel skin reduces the friction by more than 10 times. We demonstrate the capability of navigating through complex and constrained environments, such as a tortuous cerebrovascular phantom with multiple aneurysms. We further demonstrate additional functionalities, such as steerable laser delivery through a functional core incorporated in the robot's body. Given their compact, self-contained actuation and intuitive manipulation, our ferromagnetic soft continuum robots may open avenues to minimally invasive robotic surgery for previously inaccessible lesions, thereby addressing challenges and unmet needs in healthcare.

14.
Cell Host Microbe ; 21(6): 754-768.e5, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28618271

RESUMO

Cytosolic nucleic acid sensing elicits interferon production for primary antiviral defense through cascades controlled by protein ubiquitination and Ser/Thr phosphorylation. Here we show that TBK1, a core kinase of antiviral pathways, is inhibited by tyrosine phosphorylation. The Src family kinases (SFKs) Lck, Hck, and Fgr directly phosphorylate TBK1 at Tyr354/394, to prevent TBK1 dimerization and activation. Accordingly, antiviral sensing and resistance were substantially enhanced in Lck/Hck/Fgr triple knockout cells and ectopic expression of Lck/Hck/Fgr dampened the antiviral defense in cells and zebrafish. Small-molecule inhibitors of SFKs, which are conventional anti-tumor therapeutics, enhanced antiviral responses and protected zebrafish and mice from viral attack. Viral infection induced the expression of Lck/Hck/Fgr through TBK1-mediated mobilization of IRF3, thus constituting a negative feedback loop. These findings unveil the negative regulation of TBK1 via tyrosine phosphorylation and the functional integration of SFKs into innate antiviral immunity.


Assuntos
Antivirais/imunologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Tirosina/metabolismo , Viroses/imunologia , Quinases da Família src/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citosol/imunologia , Citosol/metabolismo , Células HEK293 , Células Hep G2 , Herpesvirus Humano 1 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Rhabdoviridae/imunologia , Vírus Sendai/patogenicidade , Ubiquitinação , Células Vero , Vesiculovirus , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo , Quinases da Família src/metabolismo
15.
Nat Cell Biol ; 19(4): 362-374, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28346439

RESUMO

The Hippo pathway senses cellular conditions and regulates YAP/TAZ to control cellular and tissue homeostasis, while TBK1 is central for cytosolic nucleic acid sensing and antiviral defence. The correlation between cellular nutrient/physical status and host antiviral defence is interesting but not well understood. Here we find that YAP/TAZ act as natural inhibitors of TBK1 and are vital for antiviral physiology. Independent of transcriptional regulation and through the transactivation domain, YAP/TAZ associate directly with TBK1 and abolish virus-induced TBK1 activation, by preventing TBK1 Lys63-linked ubiquitylation and the binding of adaptors/substrates. Accordingly, YAP/TAZ deletion/depletion or cellular conditions inactivating YAP/TAZ through Lats1/2 kinases relieve TBK1 suppression and boost antiviral responses, whereas expression of the transcriptionally inactive YAP dampens cytosolic RNA/DNA sensing and weakens the antiviral defence in cells and zebrafish. Thus, we describe a function of YAP/TAZ and the Hippo pathway in innate immunity, by linking cellular nutrient/physical status to antiviral host defence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citosol/metabolismo , Ácidos Nucleicos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Antivirais/farmacologia , DNA/metabolismo , Doxorrubicina/farmacologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Via de Sinalização Hippo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Fosfoproteínas/química , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas de Sinalização YAP , Peixe-Zebra/embriologia
16.
Genes Dev ; 30(9): 1086-100, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125670

RESUMO

Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.


Assuntos
Citosol/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Rhabdoviridae/enzimologia , Infecções por Rhabdoviridae/imunologia , Animais , Linhagem Celular , Ativação Enzimática/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Serina-Treonina Quinase 3 , Vesiculovirus/imunologia , Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA