Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gene ; 873: 147461, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149273

RESUMO

The selenok, selenot and selenop are three key selenoproteins involved in stress response. Our study, using the yellow catfish Pelteobagrus fulvidraco as the experimental animal, obtained the 1993-bp, 2000-bp and 1959-bp sequences of selenok, selenot and selenop promoters, respectively, and predicted the binding sites of several transcriptional factors on their promoters, such as Forkhead box O 4 (FoxO4), activating transcription factor 4 (ATF4), Kruppel-like factor 4 (KLF4) and nuclear factor erythroid 2-related factor 2 (NRF2). Selenium (Se) increased the activities of the selenok, selenot and selenop promoters. FoxO4 and Nrf2 can directly bind with selenok promoter and controlled selenok promoter activities positively; KLF4 and Nrf2 can directly bind with selenot promoter and controlled selenot promoter activities positively; FoxO4 and ATF4 can directly bind to selenop promoter and regulated selenop promoter activities positively. Se promoted FoxO4 and Nrf2 binding to selenok promoter, KLF4 and Nrf2 binding to selenot promoter, and FoxO4 and ATF4 binding to selenop promoter. Thus, we provide the first evidence for FoxO4 and Nrf2 bindnig elements in selenok promoter, KLF4 and Nrf2 binding elements in selenot promoter, and FoxO4 and ATF4 binding elements in selenop promoter, and offer novel insight into regulatory mechanism of these selenoproteins induced by Se.


Assuntos
Peixes-Gato , Selênio , Animais , Selênio/farmacologia , Peixes-Gato/genética , Peixes-Gato/metabolismo , Fator 2 Relacionado a NF-E2 , Selenoproteína P , Selenoproteínas/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293101

RESUMO

Here, we characterized the function of ctr1, ctr2 and atox1 promoters in yellow catfish Pelteobagrus fulvidraco, a common freshwater teleost in Asian countries. We obtained 1359 bp, 1842 bp and 1825 bp sequences of ctr1, ctr2 and atox1 promoters, and predicted key transcription factor binding sites on their promoters, including MRE, SREBP1, NRF2, KLF4 and STAT3. Cu differentially influenced the activities of ctr1, ctr2 and atox1 promoters from different regions. We found that the -326/-334 bp and -1232/-1240 bp locus in the atox1 promoter were functional NRF2 binding sites, which negatively controlled the activity of the atox1 promoter. The -91/-100 bp locus in the ctr1 promoter and -232/-241 bp and -699/-708 bp locus in the atox1 promoter were functional SREBP1 binding sites, which positively controlled the activities of ctr1 and atox1 promoters. Cu inhibited the NRF2 binding ability to the atox1 promoter, but promoted the SREBP1 binding ability to the ctr1 and atox1 promoters. Dietary Cu excess significantly down-regulated hepatic mRNA and total protein expression of CTR1, CTR2 and ATOX1 of yellow catfish, compared to the adequate dietary Cu group. The subcellular localization showed that CTR1 was mainly localized on the cell membrane, CTR2 in the cell membrane and the lysosome, and ATOX1 in the cytoplasm. In conclusion, we demonstrated the regulatory mechanism of three Cu transporters at the transcription levels, and found the functional NRF2 and SREBP1 response elements in ctr1, ctr2 and atox1 promoters, which provided new insights into their roles in the regulation of Cu homeostasis in fish.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Cobre/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Homeostase , RNA Mensageiro/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887381

RESUMO

Zip family proteins are involved in the control of zinc (Zn) ion homeostasis. The present study cloned the promoters and investigated the transcription responses and protein subcellular localizations of three LIV-1 subfamily members (zip10, zip13, and zip14) from common freshwater teleost yellow catfish, Pelteobagrus fulvidraco, using in vitro cultured HEK293T model cells. The 2278 bp, 1917 bp, and 1989 bp sequences of zip10, zip13, and zip14 promoters, respectively, were subcloned into pGL3-Basic plasmid for promoter activity analysis. The pcDNA3.1 plasmid coding EGFP tagged pfZip10, pfZip13, and pfZip14 were generated for subsequent confocal microscope analysis. Several potential transcription factors' binding sites were predicted within the promoters. In vitro promoter analysis in the HEK293T cells showed that high Zn administration significantly reduced the transcriptional activities of the zip10, zip13, and zip14 promoters. The -2017 bp/-2004 bp MRE in the zip10 promoter, the -360 bp/-345 bp MRE in the zip13 promoter, and the -1457 bp/-1442 bp MRE in the zip14 promoter were functional loci that were involved in the regulation of the three zips. The -606 bp/-594 bp KLF4 binding site in the zip13 promoter was a functional locus responsible for zinc-responsive regulation of zip13. The -1383 bp/-1375 bp STAT3 binding site in the zip14 promoter was a functional locus responsible for zinc-responsive regulation of zip14. Moreover, confocal microscope analysis indicated that zinc incubation significantly reduced the fluorescence intensity of pfZip10-EGFP and pfZip14-EGFP but had no significant influence on pfZip13-EGFP fluorescence intensity. Further investigation found that pfZip10 localizes on cell membranes, pfZip14 colocalized with both cell membranes and lysosome, and pfZip13 colocalized with intracellular ER and Golgi. Our research illustrated the transcription regulation of zip10, zip13, and zip14 from P. fulvidraco under zinc administration, which provided a reference value for the mechanisms involved in Zip-family-mediated control of zinc homeostasis in vertebrates.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Água Doce , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/metabolismo , RNA Mensageiro/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA