Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Discov ; 6(1): 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014431

RESUMO

ALG13 (asparagine-linked glycosylation 13) plays crucial roles in the process of N-linked glycosylation. Mutations of the ALG13 gene underlie congenital disorders of glycosylation type I (CDG-I), a rare human genetic disorder with defective glycosylation. Epilepsy is commonly observed in congenital disorders of glycosylation type I (CDG-I). In our study, we found that about 20% of adult ALG13KO knockout mice display spontaneous seizures, which were identified in a simultaneous video and intracranial EEG recording. However, the mechanisms of ALG13 by which deficiency leads to epilepsy are unknown. Whole-cell patch-clamp recordings demonstrated that ALG13KO mice show a marked decrease in gamma-aminobutyric acid A receptor (GABAAR)-mediated inhibitory synaptic transmission. Furthermore, treatment with low-dose diazepam (a positive allosteric modulator of GABAA receptors), which enhances GABAAR function, also markedly ameliorates severity of epileptic seizures in ALG13KO mice. Moreover, ALG13 may influenced the expression of GABAARα2 membrane and total protein by changing transcription level of GABAARα2. Furthermore, protein interactions between ALG13 and GABAARα2 were observed in the cortex of wild-type mice. Overall, these results reveal that ALG13 may be involved in the occurrence of epilepsy through the regulation of GABAAR function, and may provide new insight into epilepsy prevention and treatment.

2.
Front Pharmacol ; 11: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508658

RESUMO

Environmental cues associated with drug abuse are powerful mediators of drug craving and relapse in substance-abuse disorders. Consequently, attenuating the strength of cue-drug memories could reduce the number of factors that cause drug craving and relapse. Interestingly, impairing cue-drug memory reconsolidation is a generally accepted strategy aimed at reducing the intensity of cues that trigger drug-seeking and drug-taking behaviors. In addition, the agranular insular cortex (AI) is an important component of the neural circuits underlying drug-related memory reconsolidation. GABAB receptors (GABABRs) are potential targets for the treatment of addiction, and baclofen (BLF) is the only prototypical GABAB agonist available for application in clinical addiction treatment. Furthermore, ΔFosB is considered a biomarker for the evaluation of potential therapeutic interventions for addiction. Here, we used the morphine-induced conditioned place preference (CPP) paradigm to investigate whether postretrieval microinjections of BLF into the AI could affect reconsolidation of drug-reward memory, reinstatement of CPP, and the level of ΔFosB in mice. Our results showed that BLF infused into the AI immediately following morphine CPP memory retrieval, but not 6 h postretrieval or following nonretrieval, could eliminate the expression of a morphine CPP memory. This effect persisted in a morphine-priming-induced reinstatement test, suggesting that BLF in the AI was capable of preventing the reconsolidation of the morphine CPP memory. Our results also showed that the elimination of morphine CPP memory was associated with reduced morphine-associated ΔFosB expression in the longer term. Taken together, the results of our research provide evidence to support that GABABRs in the AI have an important role in drug-cue memory reconsolidation and further our understanding of the role of the AI in drug-related learning and memory.

3.
Life Sci ; 254: 117655, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32277980

RESUMO

AIMS: There have been recent reports that reconsolidation-based interventions attenuate drug reward memories in rodents. The insular cortex (IC) is an essential part of neural circuits that underlie cue-drug memory reconsolidation. GABAergic interneurons in the IC are a potent control on network excitability and play an important role in the inhibitory mediation of reward circuits. However, the function of GABAergic neurons in the IC for memory reconsolidation remains unclear; therefore, we conducted this study to clarify this. MAIN METHODS: We applied morphine-induced conditioned place preference (mCPP) paradigm and pharmacogenetic techniques to study the mediation effect of GABAergic neurons in the IC on mCPP reconsolidation. Moreover, we preliminarily explored the possible mechanisms of mediating GABAergic neurons in the IC involved in mCPP reconsolidation by assessing Arc and Erg-1 protein levels in the IC. KEY FINDINGS: We found that post-retrieval immediate activation of GABAergic neurons in the IC impaired mCPP reconsolidation. In addition, this effect was not reversed by a priming morphine injection. Further, post-retrieval inhibition and non-retrieval excitation of GABAergic neurons in the IC had no effect on mCPP. SIGNIFICANCE: Taken together, our findings suggest that GABAergic neurons in the IC are closely involved in mCPP reconsolidation. Specifically, their excitation could eliminate established mCPP and prevent the relapse risk by disruption of the reconsolidation. The underlying molecular biological mechanisms could involve reduced Arc and Erg-1 levels.


Assuntos
Córtex Cerebral/citologia , Sinais (Psicologia) , Memória , Morfina/administração & dosagem , Neurônios/metabolismo , Recompensa , Ácido gama-Aminobutírico/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
4.
Front Pharmacol ; 11: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184723

RESUMO

Dravet syndrome (DS) is a refractory epilepsy typically caused by heterozygous mutations of the Scn1a gene, which encodes the voltage-gated sodium channel Nav1.1. Glucagon-like peptide-1 (GLP-1) analogues, effective therapeutic agents for the treatment of diabetes, have recently become attractive treatment modalities for patients with nervous system disease; however, the impact of GLP-1 analogues on DS remains unknown. This study aimed to determine the neuroprotective role of liraglutide in mouse and cell models of Scn1a KO-induced epilepsy. Epileptic susceptibility, behavioral changes, and behavioral seizures were assessed using electroencephalography (EEG), IntelliCage (TSE Systems, Bad Homburg, Germany), and the open field task. Morphological changes in brain tissues were observed using hematoxylin and eosin (HE) and Nissl staining. Expression of apoptosis-related proteins and the mammalian target of rapamycin (mTOR) signaling pathway were determined using immunofluorescence and western blotting in Scn1a KO-induced epileptic mice in vitro. Scn1a KO model cell proliferation was evaluated using the Cell Counting Kit-8 assay, and the effect of liraglutide on cellular apoptosis levels was examined using Annexin V-FITC/PI flow cytometry. Apoptotic signal proteins and mTOR were assessed using reverse transcription - quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results showed that liraglutide significantly increased mRNA ((0.31 ± 0.04) *10-3 vs. (1.07 ± 0.08) * 10-3, P = 0.0004) and protein (0.10 ± 0.02 vs. 0.27 ± 0.02, P = 0.0006) expression of Scn1a in Scn1a KO-induced epileptic mice. In addition, liraglutide significantly alleviated electroencephalographic seizures, the severity of responses to epileptic seizures (96.53 ± 0.45 % vs. 85.98 ± 1.24 %, P = 0.0003), cognitive dysfunction, and epileptic-related necrotic neurons (9.76 ± 0.91 % vs. 19.65 ± 2.64 %, P = 0.0005) in Scn1a KO-induced epileptic mice. Moreover, liraglutide protected against Scn1a KO-induced apoptosis, which was manifested in the phosphorylation of mTOR (KO+NS: 1.99 ± 0.31 vs. KO+Lira: 0.97 ± 0.18, P = 0.0004), as well as the downregulation of cleaved caspase-3 (KO+NS: 0.49 ± 0.04 vs. KO+Lira: 0.30 ± 0.01, P = 0.0003) and restoration of the imbalance between BAX (KO+NS: 0.90 ± 0.02 vs. KO+Lira: 0.75 ± 0.04, P = 0.0005) and BCL-2 (KO+NS: 0.46 ± 0.02 vs. KO+Lira: 0.61 ± 0.02, P = 0.0006). Collectively, these results show that liraglutide reduces seizure susceptibility and cognitive dysfunction in the mouse model of Dravet syndrome, and exerts anti-apoptotic and neuroprotective effects in Scn1a KO mice and cells.

5.
Front Pharmacol ; 10: 856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417409

RESUMO

Brain inflammation is one of the main causes of epileptogenesis, a chronic process triggered by various insults, including genetic or acquired factors that enhance susceptibility to seizures. Amentoflavone, a naturally occurring biflavonoid compound that has anti-inflammatory effects, exerts neuroprotective effects against nervous system diseases. In the present study, we aimed to investigate the effects of amentoflavone on epilepsy in vivo and in vitro and elucidate the underlying mechanism. The chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ) kindling or lipopolysaccharide (LPS) stimulation. Cognitive dysfunction was tested by Morris water maze while hippocampal neuronal apoptosis was evaluated by immunofluorescence staining. The levels of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome complexes and inflammatory cytokines were determined using quantitative real-time polymerase chain reaction, Western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay. Amentoflavone reduced seizure susceptibility, minimized PTZ-induced cognitive dysfunction, and blocked the apoptosis of hippocampal neurons in PTZ-induced kindling mice. Amentoflavone also inhibited the activation of the NLRP3 inflammasome and decreased the levels of inflammatory cytokines in the hippocampus of PTZ-induced kindling mice. Additionally, amentoflavone could alleviate the LPS-induced inflammatory response by inhibiting the NLRP3 inflammasome in LPS-induced BV2 microglial cells. Our results indicated that amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting the NLRP3 inflammasome and, thus, mediating the inflammatory process in PTZ-induced kindling mice and LPS-induced BV2 microglial cells. Therefore, amentoflavone may be a potential treatment option for epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA