Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1361573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055062

RESUMO

Objective: The aim of this study was to evaluate the therapeutic implications of acupuncture on improving ovarian function in women diagnosed with premature ovarian insufficiency (POI) through the implementation of randomized clinical trials (RCTs). Methods: A comprehensive search of eight databases was conducted to identify RCTs up until 5 October 2023. The outcomes included the levels of sex hormones, antral follicle count (AFC), Kupperman score, and total effective rate. The risk of bias (RoB) tool was utilized to evaluate the quality of the included studies. In order to guarantee the robustness and reliability of the findings, subgroup and sensitivity analyses were performed to investigate potential sources of heterogeneity. Results: A total of 13 RCTs comprising 775 patients were included in the study. Acupuncture demonstrated significant efficacy in reducing follicle-stimulating hormone (FSH) [SMD = 0.83, 95% CI (0.27, 1.39), I 2 = 92%, p = 0.004], enhancing estradiol levels (E2) [SMD = 0.50, 95% CI (0.07, 0.93), p = 0.02, I 2 = 87%], and increasing anti-Müllerian hormone (AMH) [SMD = 0.24, 95% CI (0.05, 0.44), p = 0.01, I 2 = 8%], as well as improving the overall effective rate [RR = 1.22, 95% CI (1.10, 1.35), p < 0.01, I 2 = 14%]. Subgroup analysis revealed that compared with non-acupuncture therapy, the acupuncture with Chinese herbal medicine (CHM) and hormone replacement therapy (HRT) group exhibited a substantial reduction in FSH levels [SMD = 1.02, 95% CI (0.52, 1.51), I 2 = 60%, p < 0.01]. Furthermore, the acupuncture with CHM group also exhibited a substantial reduction [SMD = 4.59, 95% CI (1.53, 7.65), I 2 = 98%, p < 0.01]. However, only the acupuncture with CHM and HRT group demonstrated a significant increase in E2 levels [SMD = 0.55, 95% CI (0.23, 0.87), I 2 = 12%, p < 0.01]. Conclusion: Acupuncture has demonstrated superiority over non-acupuncture in diminishing serum FSH levels and increasing serum E2, AMH, and the overall efficacy rate in women diagnosed with POI. These research findings suggest the necessity for broader-scale research with meticulous designs to fully demonstrate the efficacy and safety of acupuncture in the treatment of women with POI. Systematic review registration: https://www.crd.york.ac.uk, identifier CRD42023467751.


Assuntos
Terapia por Acupuntura , Insuficiência Ovariana Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Feminino , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/sangue , Terapia por Acupuntura/métodos , Hormônio Foliculoestimulante/sangue , Resultado do Tratamento , Hormônio Antimülleriano/sangue
2.
J Hazard Mater ; 476: 135226, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029186

RESUMO

The increasing prevalence of coal mine dust-related lung diseases in coal miners calls for urgent and meticulous scrutiny of airborne respirable coal mine dust (RCMD), specifically focusing on particles at the nano-level. This necessity is driven by expanding research, including the insights revealed in this paper, that establish the presence and significantly increased toxicity of nano-sized coal dust particles in contrast to their larger counterparts. This study presents an incontrovertible visual proof of these tiny particulates in samples collected from underground mines, utilizing advanced techniques such as scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The intricate elemental composition of nano-sized coal dust identified through EDS analysis reveals the presence of elements such as silica and iron, which are known to contribute to lung pathologies when inhaled over prolonged periods. The outcomes of the statistical analyses reveal significant relationships between particle size and elemental composition, highlighting that smaller particles tend to have higher carbon content, while larger particles exhibit increased concentrations of elements like silica and aluminum. These analyses underscore the complex interactions within nano-sized coal dust, providing critical insights into their behavior, transport, and health impacts. The nano-sized coal dust could invade the alveoli, carrying these toxic elements from where they are impossible to exhale. The revelation of nano-sized coal dust's existence and the associated health hazards necessitate their incorporation into the regulatory framework governing the coal mining industry. This study lays the groundwork for heightened protective measures for miners, urging the invention of state-of-the-art sampling instruments, comprehensive physicochemical profiling of RCMD nanoparticles, and the pursuit of groundbreaking remedies to neutralize their toxic impact. These findings advocate for a paradigm shift in how the coal mining industry views and handles particulate matter, proposing a re-evaluation of occupational health standards and a call to action for protecting coal miners worldwide.


Assuntos
Minas de Carvão , Carvão Mineral , Poeira , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Poeira/análise , Carvão Mineral/análise , Exposição Ocupacional/análise , Espectrometria por Raios X , Região dos Apalaches , Nanopartículas/análise , Nanopartículas/química , Poluentes Ocupacionais do Ar/análise , Humanos
3.
Heliyon ; 10(12): e32688, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975145

RESUMO

The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38995222

RESUMO

The objective was to evaluate the effects of replacing inorganic trace minerals (ITM) with reduced levels of organic trace minerals (OTM) in proteinate forms and selenium yeast (Se-yeast) in the mineral premix of prepartal and lactating dairy goats on lactation performance, milk fatty acid (FA) composition, nutrient digestibility, and antioxidant status. Xinong Saanen dairy goats (n = 40) were blocked by parity and body weight, and randomly assigned to either ITM or OTM treatments from 4 wk prepartum to 8 mo of lactation. Both groups received the same basal diet except for the trace mineral supplement. The ITM supplement included Fe, Cu, Zn, and Mn as sulfates, and Se as selenite to meet the recommendations. The OTM supplement included Fe, Cu, Zn, and Mn as proteinates at 50% of ITM supplement levels, and Se as Se-yeast at 100% of ITM supplement level. Sampling and measurements were performed in the first, second, fourth, and eighth month of lactation. Data were summarized by month and treatment, and analyzed using the Mixed Model of SPSS with repeated measures. OTM group showed lower milk fat (P = 0.02) and higher milk Se (P = 0.03) with no compromised effects on milk yield and milk protein compared to ITM group. Furthermore, OTM decreased the content of C6:0, C8:0, and C10:0 (P < 0.05) and increased the content of odd- and branched-chain FAs in milk fat due to greater content of C15:0 (P = 0.01) and anteiso C15:0 (P = 0.07). OTM led to greater total tract digestibility of dry matter (P = 0.03), crude protein (P = 0.07), ether extract (P = 0.03), and acid detergent fiber (P = 0.05). OTM goats showed less fecal excretion of Fe (P = 0.01), Cu (P < 0.01), and Zn (P = 0.08) compared to ITM goats. There was a tendency for greater serum GSH-Px activity (P = 0.09) with OTM. Overall, the long-term substitution of reduced levels of OTM for ITM can change milk fat and FA composition while maintaining milk yield, digestibility, and antioxidant status.


Lipids play important roles in the physiochemical properties of milk and dairy products. For example, specific milk fatty acids (FAs), such as those with 8- and 10-carbon chains, influence the flavor of goat milk. Additionally, certain odd- and branched-chain (OBCFA) exhibit anticarcinogenic effects in vitro. Studies in dairy cows have demonstrated organic trace minerals (OTM) can enhance lactation performance, nutrient digestibility, and antioxidant status. In this study, substituting OTM for inorganic trace minerals (ITM) in the diet of dairy goats decreased milk fat without negatively impacting milk yield, nutrient digestibility, and serum antioxidant status. Feeding OTM reduced the content of C6:0, C8:0, and C10:0 FAs while increasing the content of OBCFA in milk fat. The data suggest that replacing ITM with reduced levels of OTM in proteinates and selenium yeast can alter milk FA composition without compromising milk yield, nutrient digestibility, and antioxidant status in dairy goats.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes , Dieta , Suplementos Nutricionais , Ácidos Graxos , Cabras , Lactação , Leite , Selênio , Oligoelementos , Animais , Cabras/fisiologia , Feminino , Lactação/efeitos dos fármacos , Lactação/fisiologia , Leite/química , Ração Animal/análise , Ácidos Graxos/metabolismo , Dieta/veterinária , Oligoelementos/administração & dosagem , Oligoelementos/metabolismo , Selênio/farmacologia , Selênio/administração & dosagem , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Distribuição Aleatória
5.
Support Care Cancer ; 32(8): 561, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085696

RESUMO

Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.


Assuntos
Antagonistas de Androgênios , Cognição , Neoplasias da Próstata , Humanos , Antagonistas de Androgênios/efeitos adversos , Neoplasias da Próstata/tratamento farmacológico , Masculino , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Fatores de Risco
6.
Int J Oncol ; 65(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847236

RESUMO

Glutathione (GSH)­degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ­glutamyl transpeptidase (GGT) and intracellular GSH­specific γ­glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH­degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH­degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.


Assuntos
Glutationa , Neoplasias , gama-Glutamilciclotransferase , gama-Glutamiltransferase , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/enzimologia , Glutationa/metabolismo , gama-Glutamilciclotransferase/metabolismo , gama-Glutamilciclotransferase/genética , gama-Glutamiltransferase/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Animais , Regulação Neoplásica da Expressão Gênica , Estresse Oxidativo , Estresse do Retículo Endoplasmático
7.
Cell Biosci ; 14(1): 66, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783336

RESUMO

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

8.
Anim Nutr ; 17: 376-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812494

RESUMO

In markets for beef and sheep meat, an appropriate level of intramuscular fat (IMF) is highly desirable for meat-eating quality, but strategies to improve it usually lead to an undesirable excess in carcase fat, presenting a major challenge to livestock producers. To solve this problem, we need to understand the partitioning of fat among the major fat depots: IMF, subcutaneous fat (SCF) and visceral fat (VF). In most genotypes of cattle and sheep, the rate of accretion is lower for IMF than for SCF and VF, so genetic selection for a high level of IMF, or the use of an increased dietary energy supply to promote IMF deposition, will increase overall fatness and feed costs. On the other hand, feeding postnatal calves with excessive concentrates promotes IMF deposition, so a nutritional strategy is feasible. With genetic strategies, several problems arise: 1) positive genetic correlations between IMF, SCF and VF differ among genotypes in both cattle and sheep; 2) genotypes appear to have specific, characteristic rates of accretion of IMF during periods of growth and fattening; 3) most breeds of cattle and sheep naturally produce meat with relatively low levels of IMF, but IMF does vary substantially among individuals and breeds so progress is possible through accurate measurement of IMF. Therefore, an essential prerequisite for selection will be knowledge of the genetic correlations and fat accretion rates for each genotype. Currently, selection for IMF is based on existing technology that directly measures IMF in the progeny or siblings, or estimates IMF in live animals. New technology is needed to permit the simultaneous measurement of SCF and IMF in the field, thus opening up the possibility of accurate selection, particularly for fat partitioning in live animals. Specifically, there would be great value in detecting individuals with an IMF advantage at an early age so the generation interval could be shortened and genetic gain accelerated. Genetic gain would also be greatly aided if we could select for genes that control adipogenesis and lipogenesis and are also differentially expressed in the various depots.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38685575

RESUMO

Rumen fungi play an essential role in the breakdown of dietary fibrous components, facilitating the provision of nutrients and energy to the host animals. This study investigated the fermentation characteristics and effects on rumen microbiota of yak rumen anaerobic fungus Orpinomyces sp. YF3 in goat rumen fluid, both with and without fungal flora, utilizing anaerobic fermentation bottles. Crushed and air-dried wheat straw served as the fermentation substrate, and cycloheximide was used to eradicate microorganisms from the rumen fluid of dairy goats. The experiment compromised four treatment groups (2×2 factorial design): control (C); yak fungus group (CF, Orpinomyces sp. YF3); goat fungi eliminated group (CA, antibiotic: 0.25 mg/mL cycloheximide); goat fungi eliminated+yak fungus group (CAF). Each treatment had six replicates. Fermentation characteristics and microbial composition of the fermentation media were analyzed using one-way analysis of variance and high-throughput sequencing technology. The findings revealed that in the Orpinomyces sp. YF3 addition group (CF and CAF groups), there were significant increases in ammonia nitrogen concentration by 70%, total volatile fatty acids (VFA) by 53%, as well as acetate, isobutyrate, and valerate concentrations, and the ratio of acetate to propionate (p < 0.05), while the propionate proportion declined by 13%, alongside a reduction of butyrate concentration (p < 0.05). Similarly, in the CF and CAF groups, there were a notable increase in the relative abundance of Bacteroidota, Synergistota, Desulfobacterota, Actinobacteria, and Fusobacteriota, alongside a decrease in the relative abundance of Fibrobacterota and Proteobacteria (p < 0.05). Bacteria exhibiting increased relative abundance were positively correlated with the activity of carboxymethyl cellulase and avicelase, total VFA concentration, and acetate proportion, while showing a negatively correlation with propionate proportion. In conclusion, supplementing rumen fermentation media with yak rumen anaerobic fungus Orpinomyces sp. YF3 led to an increase in bacteria associated with fibre degradation and acetic acid production, a decrease in propionate-producing bacteria, enhanced the activity of plant cell wall degrading enzymes, and promoted cellulose degradation, ultimately elevating total VAF concentration and acetate proportion. This presents a novel approach to enhance roughage utilization in ruminants.

10.
Langmuir ; 40(17): 9265-9279, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636094

RESUMO

Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.

11.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612109

RESUMO

Numerous sources have already demonstrated that varying annealing rates can result in distinct toughness and brittleness in glass. To determine the underlying mechanisms driving this phenomenon, molecular dynamic (MD) simulations were employed to investigate the microstructure of aluminosilicate glasses under different cooling rates, and then uniaxial stretching was performed on them under controlled conditions. Results indicated that compared with short-range structure, cooling rate has a greater influence on the medium-range structure in glass, and it remarkably affects the volume of voids. Both factors play a crucial role in determining the brittleness of the glass. The former adjusts network connectivity to influence force transmission by manipulating the levels of bridging oxygen (BO) and non-bridging oxygen (NBO), and the latter accomplishes the objective of influencing brittleness by modifying the environmental conditions that affect the changes in BO and NBO content. The variation in the void environment results in differences in the strategies of the changes in BO and NBO content during glass stress. These findings stem from the excellent response of BO and NBO to the characteristic points of stress-strain curves during stretching. This paper holds importance in understanding the reasons behind the effect of cooling rates on glass brittleness and in enhancing our understanding of the ductile/brittle transition (DTB) in glass.

12.
Chem Commun (Camb) ; 60(31): 4121-4139, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38533605

RESUMO

The development of efficient hydrogen release and storage processes to provide environmentally friendly hydrogen solutions for mobile energy storage systems (MESS) stands as one of the most challenging tasks in addressing the energy crisis and environmental degradation. The catalytic dehydrogenative coupling of methanol and amines (DCMA) and its reverse are featured by high capacity for hydrogen release and storage, enhanced capability to purify the produced hydrogen, avoidance of carbon emissions and singular product composition, offering the environmentally and operationally benign strategy of overcoming the challenges associated with MESS. Particularly, the cycle between these two processes within the same catalytic system eliminates the need for collecting and transporting spent fuel back to a central facility, significantly facilitating easy recharging. Despite the promising attributes of the above strategy for environmentally friendly hydrogen solutions, challenges persist, primarily due to the high thermodynamic barriers encountered in methanol dehydrogenation and amide hydrogenation. By systematically summarizing various reaction mechanisms and pathways involving Ru-, Mn-, Fe-, and Mo-based catalytic systems in the development of catalytic DCMA and its reverse and the cycling between the two, this review highlights the current research landscape, identifies gaps, and suggests directions for future investigations to overcome these challenges. Additionally, the critical importance of developing efficient catalytic systems that operate under milder conditions, thereby facilitating the practical application of DCMA in MESS, is also underscored.

13.
Metabolites ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535310

RESUMO

To investigate the difference between rumen-protected niacin (RPN) and rumen-protected nicotinamide (RPM) in the transcriptome of genes relating to the lipid metabolism of the liver of periparturient dairy cows, 10 healthy Chinese Holstein cows were randomly divided into two groups and fed diets supplemented with 18.4 g/d RPN or 18.7 g/d RPM, respectively. The experiment lasted from 14 days before to 21 days after parturition. Liver biopsies were taken 21 days postpartum for transcriptomic sequencing. In addition, human LO2 cells were cultured in a medium containing 1.6 mmol/L of non-esterified fatty acids and 1 mmol/L niacin (NA) or 2 mmol/L nicotinamide (NAM) to verify the expression of the 10 genes selected from the transcriptomic analysis of the liver biopsies. The expression of a total of 9837 genes was detected in the liver biopsies, among which 1210 differentially expressed genes (DEGs) were identified, with 579 upregulated and 631 downregulated genes. These DEGs were associated mainly with lipid metabolism, oxidative stress, and some inflammatory pathways. Gene ontology (GO) enrichment analysis showed that 355 DEGs were enriched in 38 GO terms. The differences in the expression of these DEGs between RPN and RPM were predominantly related to the processes of steroid catabolism, steroid hydroxylase, monooxygenase activity, oxidoreductase activity, hemoglobin binding, and ferric iron binding, which are involved mainly in lipid anabolism and redox processes. The expressions of FADS2, SLC27A6, ARHGAP24, and THRSP in LO2 cells were significantly higher (p < 0.05) while the expressions of BCO2, MARS1, GARS1, S100A12, AGMO, and OSBPL11 were significantly lower (p < 0.05) on the NA treatment compared to the NAM treatment, indicating that NA played a role in liver metabolism by directly regulating fatty acid anabolism and transport, inflammatory factor expression, and oxidative stress; and NAM functioned more as a precursor of nicotinamide adenine dinucleotide (NAD, coenzyme I) and nicotinamide adenine dinucleotide phosphate (NADP, coenzyme II) to participate indirectly in biological processes such as ether lipid metabolism, cholesterol metabolism, energy metabolism, and other processes.

14.
Sci Rep ; 14(1): 3723, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355890

RESUMO

Trichostrongylus colubriformis is a parasitic helminth that primarily infects small ruminants, causing substantial economic losses in the livestock industry. Exploring the microbiome of this helminth might provide insights into the potential influence of its microbial community on the parasite's survival. We characterised the intestinal microbiome of T. colubriformis that had been collected from the duodenum of sheep, and compared the helminth microbiome with the duodenal microbiome of its host, aiming to identify contributions from the helminth's environment. At the same time, we explored the isolation of fastidious organisms from the harvested helminth. Primary alpha and beta diversity analyses of bacterial species revealed statistically significant differences between the parasite and the host, in terms of species richness and ecological composition. 16S rRNA differential abundance analysis showed that Mycoplasmoides and Stenotrophomonas were significantly present in T. colubriformis but not in the duodenal microbiome of the sheep. Furthermore, two bacteria, Aeromonas caviae and Aeromonas hydrophila, were isolated from T. colubriformis. Examinations of the genome highlight differences in genome size and profiles of antimicrobial resistance genes. Our results suggest that T. colubriformis carries a specific bacterial community that could be supporting the helminth's long-term survival in the host's digestive system.


Assuntos
Parasitos , Doenças dos Ovinos , Tricostrongilose , Ovinos/genética , Animais , Trichostrongylus , Tricostrongilose/veterinária , Tricostrongilose/genética , Tricostrongilose/parasitologia , Parasitos/genética , RNA Ribossômico 16S/genética , Doenças dos Ovinos/genética , Contagem de Ovos de Parasitas/veterinária
15.
Sci Total Environ ; 913: 169750, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163596

RESUMO

Shale gas, with its abundance and lower carbon footprint compared to other fossil fuels, is an important bridge fuel in the ongoing energy transition. However, a notable concern in shale gas exploration is fugitive methane emissions during the extraction, development, and transport of natural gas. While most existing works evaluate methane emissions released by well fracking, completion and operation, the greenhouse footprint of unproductive shale gas wells (often abandoned or orphaned) has received little scrutiny. A large fraction of these emissions from abandoned shale gas wells are due to the diffusive transport of methane trapped in nanoporous shale matrix, which is poorly understood. Here, we develop a theoretical kinetic approach to predict methane diffusive flux from heterogeneous shale matrix. Our theoretical model is based on a layer sequence formulation and accurately considers multiple flow mechanisms, including viscous flow, gas slippage, and Knudsen diffusion and their mutual interactions. The model is validated against the observed methane diffusion data obtained from high-pressure and high-temperature experimental measurements on Marcellus shale. We find that methane diffusive flux increases as reservoir pressure decreases. We estimate methane emission due to diffusive transport up to 20 × 103 m3 per well per day, which is comparable to emissions from flowback fluid. For the first time, unrecovered natural gas in the shale matrix is demonstrated to be the main source of methane emissions from abandoned shale gas wells. Given the long-lasting nature of diffusive transport to shale gas seepage, it is suggested that regulatory requirements should be implemented to provide long-term monitoring of methane emissions from abandoned shale gas wells.

16.
ACS Omega ; 9(3): 3885-3893, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284039

RESUMO

N2-hydraulic compound fracturing (NHCF) is an innovative technology aimed at addressing coalbed methane development challenges in low-permeability, low-pressure coal reservoirs in China. However, limited research has been focused on the evolution of damage zones, pore pressure fields, and fluid pressure characteristics in this context. In this paper, we establish a finite element seepage equation based on the volumetric opening model and construct a finite element model for horizontal well stage fracturing. We used the physical and mechanical parameters specific to coal reservoirs in the Xinjing coal mine. Subsequently, we conducted numerical simulations of N2 fracturing (NF), hydraulic fracturing (HF), and NHCF using ANSYS. The results indicate that the initiation-fracturing pressure of NHCF is lower than that of HF but higher than NF, but the steady-fracturing pressure is higher than HF and NF. Moreover, numerical simulation shows that under the same water injection volume, the total volumetric opening formed by NHCF is about 2 times that of HF, NF is the smallest, and the damage zone and pore pressure field caused by NHCF are the largest. Finally, when comparing the casing pressure curve of NHCF by field test with the fluid pressure curve of wellbore obtained from numerical simulation, we observe a strong correlation; the steady fracturing pressure of NF is about 13 MPa, which is basically consistent with the numerical simulation, and the steady- fracturing pressure of HF after NF is about 27 MPa, which is slightly lower than the 30 MPa in numerical simulation. This is because in the numerical simulation, the reservoir parameters after NF can be inherited to the subsequent HF, which cannot be done in the field test. This study presents a novel method for numerical fluid fracturing simulation, offering a fresh perspective on the subject.

17.
Appl Environ Microbiol ; 90(1): e0154823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112425

RESUMO

In bacteria, the second messenger cyclic di-GMP (c-di-GMP) is synthesized and degraded by multiple diguanylate cyclases (DGCs) and phosphodiesterases. A high level of c-di-GMP induces biofilm formation and represses motility. WspR, a hybrid response regulator DGC, produces c-di-GMP when it is phosphorylated. FlhF, a signal recognition particle-type GTPase, is initially localized to the cell poles and is indispensable for polar flagellar localization in Pseudomonas aeruginosa. In this study, we report that deletion of flhF affected biofilm formation and the c-di-GMP level in P. aeruginosa. Phenotypic analysis of a flhF knockout mutant revealed increased biofilm formation, wrinkled colonies on Congo red agar, and an elevated c-di-GMP level compared to the wild-type strain, PAO1. Yeast and bacterial two-hybrid systems showed that FlhF binds to the response regulator HsbR, and HsbR binds to WspR. Deletion of hsbR or wspR in the ΔflhF background abolished the phenotype of ΔflhF. In addition, confocal microscopy demonstrated that WspR-GFP was distributed throughout the cytoplasm and formed a visible cluster at one cell pole in PAO1 and ΔhsbR, but it was mainly distributed as visible clusters at the lateral side of the periplasm and with visible clusters at both cell poles in ΔflhF. These findings suggest that FlhF influences the subcellular cluster and localization of WspR and negatively modulates WspR DGC activity in a manner dependent on HsbR. Together, our findings demonstrate a novel mechanism for FlhF modulating the lifestyle transition between motility and biofilm via HsbR to regulate the DGC activity of WspR.IMPORTANCECyclic di-GMP (c-di-GMP) is a second messenger that controls flagellum biosynthesis, adhesion, virulence, motility, exopolysaccharide production, and biofilm formation in bacteria. Recent research has shown that distinct diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) produce highly specific outputs. Some DGCs and PDEs contribute to the total global c-di-GMP concentration, but others only affect local c-di-GMP in a microenvironment. However, the underlying mechanisms are unclear. Here, we report that FlhF affects the localization and DGC activity of WspR via HsbR and is implicated in local c-di-GMP signaling in Pseudomonas aeruginosa. This study establishes the link between the c-di-GMP signaling system and the flagellar localization and provides insight for understanding the complex regulatory network of c-di-GMP signaling.


Assuntos
Dietilestilbestrol/análogos & derivados , Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Proteínas de Escherichia coli/genética , GMP Cíclico/metabolismo , Biofilmes , Fósforo-Oxigênio Liases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
18.
Small ; : e2308002, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084459

RESUMO

In order to reveal the dynamic response characteristic of thin film thermocouples (TFTCs), the nichrome/nisil (NiCr/NiSi) TFTCs are prepared onto the glass substrate. With short pulse infrared laser system, NiCr/NiSi TFTCs are dynamically calibrated. The thermoelectric electromotive force (TEF) curves of NiCr/NiSi TFTCs are recorded by the memory hicorder system, which could reflect TEF signals with resolution ratio in nanosecond and microvolt, simultaneously. With increasing laser energy from 15.49 to 29.59 mJ, TEF curves display more and more violent oscillation, even negative value. The results show that the bounce of thermal energy happens between two interfaces of TFTCs because the thermal conductivity of glass and air is significantly lower than that of NiSi/NiCr TFTCs. The bounce of thermal energy results in the obvious decrease of nNiCr and nNiSi , as well as oscillation of TEF. For laser energy in 29.59 mJ, the bounce of thermal energy in NiCr film could result in nNiCr < nNiSi . Then, TEF value appears abnormal negative value. Based on the results, the complex thermal energy transport process in TFTCs dynamic calibration is revealed, which results in the oscillation of thermal energy and TEF signal.

19.
Front Neurol ; 14: 1237661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125833

RESUMO

Background: To assess the clinical and safety outcomes of endovascular treatment (EVT) administered more than 24 h after the onset of symptoms in patients with acute ischemic stroke resulting from anterior circulation large-vessel occlusion or stenosis (AIS-ACLVO/S). Methods: We enrolled consecutive AIS-ACLVO/S patients who received EVT in our hospital between January 2019 and February 2022 and divided them into two groups based on the time from AIS onset to EVT: EVT < 24 h group and EVT >24 h group. The successful reperfusion (modified thrombolysis in cerebral infarction, [mTICI] ≥2b), 90-day modified Rankin Scale score (mRS), intracranial hemorrhage (ICH), and symptomatic ICH (sICH), as well as mortality, were analyzed in the two groups of patients. Results: A total of 239 patients were included in the study, with 214 patients in the EVT < 24 h group (67.8 ± 0.8 years, 126 males) and 25 patients in the EVT > 24 h group (62.80 ± 2.0 years, 22 males). Both groups were similar in terms of hypertension, diabetes history, responsible vessels, and Alberta stroke program early computed tomography scores (p > 0.05). However, the EVT < 24 h group had significantly higher age, history of atrial fibrillation, proportion of patients receiving intravenous thrombolysis, and NIHSS scores before EVT than the EVT > 24 h group. AIS etiology differed between the groups, with more cases of large artery atherosclerosis in the EVT > 24-h group and more cases of cardioembolism in the EVT < 24-h group. Successful reperfusion (mTICI ≥2b), ICH, and sICH were similar between the groups. The 90-day functional independence rate (mRS ≤ 2) was significantly higher in the EVT > 24-h than in the EVT < 24-h group (80% vs. 39.7%, p < 0.001), while the 90-day mortality rate was lower in the EVT > 24-h group (0% vs. 24.8%, p < 0.001). Conclusion: In our study, we found that EVT beyond 24 h of symptom onset in patients selected with multimodal MR screening, was associated with high functional independence rates and low mortality. Larger or randomized studies are needed to confirm these findings.

20.
Sci Prog ; 106(4): 368504231216832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38105488

RESUMO

Adverse pressure gradients can cause severe flow separation within typical S-shaped inlets. This results in a total pressure distortion at the aerodynamic interface plane (AIP). The expansive bending pipe, where flow separation also occurs due to the adverse pressure gradient, is the basis for investigations into S-shaped inlets. In this study, surface dielectric barrier discharge (SDBD) plasma actuators are used to moderate the total pressure distortion in the AIP of an expansive bending pipe under a 10 m/s incoming flow. Also, the influences of actuation voltage amplitude and pulsed frequency on the total pressure distortion of the AIP are investigated under two plasma actuation modes, nanosecond pulsed SDBD and alternating current (AC) SDBD. Under optimal actuation parameters, the nanosecond pulsed SDBD and the AC-SDBD can reduce the distortion index by 14.93% and 32.22%, respectively. The results demonstrate the effectiveness of SDBD plasma actuators in suppressing flow separation within expansive bending pipes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA