Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722857

RESUMO

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mycobacterium tuberculosis , Serina Proteases , Caderinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/metabolismo , Animais , Humanos , Camundongos , Serina Proteases/metabolismo , Serina Proteases/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células A549 , Tuberculose/microbiologia , Tuberculose/metabolismo , Feminino
2.
Front Cell Infect Microbiol ; 13: 1292864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076461

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium bovis/genética , Proteínas de Bactérias/metabolismo , Multiômica , Tuberculose/microbiologia , Lisina/metabolismo , Vacina BCG
3.
Front Microbiol ; 14: 1304932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152375

RESUMO

Antibiotic resistance in Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus remains a major public health concern worldwide. Furthermore, these microbes frequently co-exist in biofilm-associated infections, largely nullifying antibiotic-based therapy. Therefore, it is imperative to develop an efficient therapeutic strategy for combating infections caused by polymicrobial biofilms. In this study, we investigated the antibacterial and antibiofilm activity of the bacteriophage endolysin Ply113 in vitro. Ply113 exhibited high and rapid lytic activity against E. faecium, E. faecalis, and S. aureus, including vancomycin-resistant Enterococcus and methicillin-resistant S. aureus isolates. Transmission electron microscopy revealed that Ply113 treatment led to the detachment of bacterial cell walls and considerable cell lysis. Ply113 maintained stable lytic activity over a temperature range of 4-45°C, over a pH range of 5.0-8.0, and in the presence of 0-400 mM NaCl. Ply113 treatment effectively eliminated the mono-species biofilms formed by E. faecium, E. faecalis, and S. aureus in a dose-dependent manner. Ply113 was also able to eliminate the dual-species biofilms of E. faecium-S. aureus and E. faecalis-S. aureus. Additionally, Ply113 exerted potent antibacterial efficacy in vivo, distinctly decreasing the bacterial loads in a murine peritoneal septicemia model. Our findings suggest that the bacteriophage endolysin Ply113 is a promising antimicrobial agent for the treatment of polymicrobial infections.

4.
Virulence ; 14(1): 2283896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010345

RESUMO

Streptococcus suis is a zoonotic Gram-positive bacterium that causes invasive infections such as sepsis and meningitis, threatening public health worldwide. For successful establishment of infection, the bacterium should subvert the innate effectors of immune defence, including the cathelicidin family of host-defence peptides that combat pathogenic bacteria by directly disrupting cell membranes and coordinating immune responses. Here, our study shows that an extracellular endopeptidase O (PepO) of S. suis contributes to assisting the bacterium to resist cathelicidin-mediated killing, as the deletion of the pepO gene makes S. suis more sensitive to the human cathelicidin LL-37, as well as its mouse equivalent, mCRAMP. This protease targets and cleaves both LL-37 and mCRAMP, degrading them into shorter peptides with only a few amino acids, thereby abrogating their ability to kill S. suis. By cleaving LL-37 and mCRAMP, PepO impairs their chemotactic properties for neutrophil migration and undermines their anti-apoptosis activity, which is required for prolonging neutrophil lifespan. Also, PepO inhibits the ability of LL-37 and mCRAMP to promote lysosome development in macrophages. Moreover, the loss of PepO attenuates organ injury and decreases bacterial burdens in a murine model of S. suis bacteraemia. Taken together, these data provide novel insights into the role of the intrinsic proteolytic characteristics of PepO in S. suis-host interaction. Our findings demonstrate that S. suis utilizes the PepO protease to cleave cathelicidins, which is an immunosuppressive strategy adopted by this bacterium to facilitate pathogenesis.


Assuntos
Catelicidinas , Streptococcus suis , Animais , Humanos , Camundongos , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Evasão da Resposta Imune , Streptococcus suis/genética , Streptococcus suis/metabolismo , Metaloendopeptidases , Bactérias/metabolismo
5.
Int J Biol Macromol ; 253(Pt 8): 127547, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863130

RESUMO

Macrophages serve as the primary immune cells responsible for the innate immune defense against Mycobacterium tuberculosis (MTB) infection within the host. Specifically, NLRP3, a member of the NLRs family, plays a significant role in conferring resistance against MTB infection. Conversely, MTB evades innate immune killing by impeding the activation of the NLRP3 inflammasome, although the precise mechanism remains uncertain. In this study, we have identified PE12 (Rv1172c), a member of the PE/PPE family proteins, as an extracellular protein of MTB. PE12 interacts with Toll like receptor 4 (TLR4) in macrophages, forming the PE12-TLR4 complex which subsequently inhibits the transcription and expression of NLRP3. As a result, the transcription and secretion of IL-1ß are reduced through the PE12-TLR4-NLRP3-IL-1ß immune pathway. In vitro and in vivo experiments using a PE12-deficient strain (H37RvΔPE12) demonstrate a weakening of the suppression of the inflammatory response to MTB infection. Our findings highlight the role of the PE12 protein in not only inhibiting the transcription and release of inflammatory cytokines but also mediating the killing of MTB escape macrophages through TLR4 and inducing lung injury in MTB-infected mice. These results provide evidence that PE12 plays a significant role in the inhibition of the host immune response by MTB.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Macrófagos/metabolismo , Inflamassomos/metabolismo
6.
NPJ Vaccines ; 8(1): 72, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210376

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes paratuberculosis (PTB), which is a granulomatous enteritis in ruminants that threatens the dairy industry's healthy development and public health safety worldwide. Because the commercial inactivated vaccines are not completely protective and interfere with bovine tuberculosis diagnostics, we tested four fusion proteins, namely 66NC, 66CN, 90NC, and 90CN, which were constructed with MAP3527, Ag85B, and Hsp70 of MAP in different tandem combinations. Notably, 66NC, which encodes a 66 kDa fusion protein that combines in linear order MAP3527N40-232, Ag85B41-330, and MAP3527C231-361, induced a powerful and specific IFN-γ response. Immunization of C57BL/6 mice with the 66NC fusion protein formulated in Montanide ISA 61 VG adjuvant generated robust Th1, Th2, and Th17 type immune responses and strong antibody responses. The 66NC vaccine protected C57BL/6 mice against virulent MAP K-10 infection. This resulted in a reduction of bacterial load and improvement of pathological damage in the liver and intestine, in addition to a reduction of body weight loss; significantly better protection than the reported 74 F vaccine was also induced. Furthermore, vaccine efficacy correlated with the levels of IFN-γ-, TNF-α-, and IL-17A-secreting antigen-specific CD4+ and CD8+ T lymphocytes as well as with serum IFN-γ and TNF-α levels after vaccination. These results demonstrate that recombinant protein 66NC is an efficient candidate for further development into a protective vaccine in terms of inducing specific protection against MAP.

7.
Phytomedicine ; 114: 154803, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058946

RESUMO

BACKGROUND: The resistance of Gram-negative bacteria to polymyxin B, caused by the plasmid-mediated colistin resistance gene mcr-1, which encodes a phosphoethanolamine transferase (MCR-1), is a serious threat to global public health. Therefore, it is urgent to find new drugs that can effectively alleviate polymyxin B resistance. Through the screening of 78 natural compounds, we found that cajanin stilbene acid (CSA) can significantly restore the susceptibility of polymyxin B to mcr-1 positive Escherichia coli (E. coli). PURPOSE: In this study, we tried to evaluate the ability of CSA to restore the susceptibility of polymyxin B towards the E. coli, and explore the mechanism of sensitivity recovery. STUDY DESIGN AND METHODS: Checkerboard MICs, time-killing curves, scanning electron microscope, lethal and semi-lethal models of infection in mice were used to assess the ability of CSA to restore the susceptibility of polymyxyn to E. coli. The interaction between CSA and MCR-1 was evaluated using surface plasmon resonance (SPR), and molecular docking experiments. RESULTS: Here, we find that CSA, a potential direct inhibitor of MCR-1, effectively restores the sensitivity of E. coli to polymyxin B. CSA can restore the sensitivity of polymyxin B to drug-resistant E. coli, and the MIC value can be reduced to 1 µg/ml. The time killing curve and scanning electron microscopy results also showed that CSA can effectively restore polymyxin B sensitivity. In vivo experiments showed that the simultaneous use of CSA and polymyxin B can effectively reduce the infection of drug-resistant E. coli in mice. SPR and molecular docking experiments confirmed that CSA strongly bound to MCR-1. The 17-carbonyl oxygen and 12- and 18­hydroxyl oxygens of CSA were the key sites binding to MCR-1. CONCLUSION: CSA is able to significantly restore the sensitivity of polymyxin B to E. coli in vivo and in vitro. CSA inhibits the enzymatic activity of the MCR-1 protein by binding to key amino acids at the active center of the MCR-1 protein.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Camundongos , Colistina/farmacologia , Polimixina B/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Simulação de Acoplamento Molecular , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Plasmídeos
8.
NPJ Biofilms Microbiomes ; 9(1): 16, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024490

RESUMO

Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.


Assuntos
Bacteriófagos , Catelicidinas , Animais , Camundongos , Catelicidinas/farmacologia , Vancomicina/farmacologia , Enterococcus faecalis , Antibacterianos/farmacologia , Biofilmes
9.
Int J Antimicrob Agents ; 61(5): 106793, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933870

RESUMO

Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.


Assuntos
Conjugação Genética , Streptococcus , Plasmídeos/genética , Streptococcus/genética , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal
10.
Microb Pathog ; 173(Pt B): 105880, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36402348

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). Mtb can overcome macrophage intracellular killing and lead to persistent infections. The proteases of Mtb are critical virulence factors that participate in immune responses. We determined that Rv3090 is a cell wall-associated protease and a potential pathogenic factor. To characterize the role of Rv3090 in Mtb, recombinant Msg_Rv3090 and Msg_pAIN strains were constructed to infect macrophages and mice. Lactate dehydrogenase assays and flow cytometry results showed that Rv3090 induces late macrophage apoptosis. In vivo infection experiments indicated that Rv3090 could induce hepatocyte and lung cell apoptosis and cause pathological damage to the spleen, livers and lungs. Msg_Rv3090 specifically stimulated the secretion of inflammatory cytokines including TNF-α, IL-6 and IL-1ß. Overexpression of Rv3090 significantly promoted the survival of Msg in livers and lungs. Thus, Rv3090 protease triggered late cell apoptosis and contributed to the pathogenicity and dissemination of Mtb.


Assuntos
Mycobacterium tuberculosis , Peptídeo Hidrolases , Animais , Camundongos , Apoptose , Endopeptidases , Fatores de Virulência
11.
DNA Cell Biol ; 41(12): 1063-1074, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36394437

RESUMO

l-Arginine serves as a carbon and nitrogen source and is critical for Mycobacterium tuberculosis (Mtb) survival in the host. Generally, ArgR acts as a repressor regulating arginine biosynthesis by binding to the promoter of the argCJBDFGH gene cluster. In this study, we report that the dormancy regulator DosR is a novel arginine regulator binding to the promoter region of argC (rv1652), which regulates arginine synthesis. Phosphorylation modification promoted DosR binding to a region upstream of the promoter. Cofactors, including arginine and metal ions, had an inhibitory effect on this association. Furthermore, DosR regulatory function relies on the interaction of the 167, 181, 182, and 197 amino acid residues with an inverse complementary sequence. Arginine also binds to DosR and directly affects its DNA-binding ability. Together, the results demonstrate that DosR acts as a novel transcriptional regulator of arginine synthesis in Mycobacterium bovis bacille Calmette-Guerin.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Arginina/genética , Arginina/metabolismo , Família Multigênica
12.
Front Microbiol ; 13: 928307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160205

RESUMO

Actinobacillus pleuropneumoniae is an important respiratory pig pathogen that causes substantial losses in the worldwide swine industry. Chronic or subclinical infection with no apparent clinical symptoms poses a challenge for preventing transmission between herds. Rapid diagnostics is important for the control of epidemic diseases. In this study, we formulated an A. pleuropneumoniae species-specific apxIVA-based CRISPR/Cas12a-assisted rapid detection platform (Card) that combines recombinase polymerase amplification (RPA) of target DNA and subsequent Cas12a ssDNase activation. Card has a detection limit of 10 CFUs of A. pleuropneumoniae, and there is no cross-reactivity with other common swine pathogens. The detection process can be completed in 1 h, and there was 100% agreement between the conventional apxIVA-based PCR and Card in detecting A. pleuropneumoniae in lung samples. Microplate fluorescence readout enables high-throughput use in diagnostic laboratories, and naked eye and lateral flow test readouts enable use at the point of care. We conclude that Card is a versatile, rapid, accurate molecular diagnostic platform suitable for use in both laboratory and low-resource settings.

13.
Front Microbiol ; 13: 947821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910605

RESUMO

Streptococcus suis is an important zoonotic pathogen, however, an efficient markerless genetic manipulation system is still lacking for further physiological and pathological studies on this bacterium. Several techniques have been developed for markerless genetic manipulation of S. suis utilizing either a temperature-sensitive vector or a counterselectable markers (CSMs), however, at present, the efficiency of these techniques is not very satisfactory. In this study, we developed a strategy for markerless genetic manipulation of S. suis employing a CSM based on a conditionally lethal mutant allele of pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase (PheS). This mutant pheS, mPheS, was constructed by introducing site-directed mutations for a T261S/A315G double-substitution and a number of silent mutations to decrease its similarity with the endogenous wild type pheS gene (wtPheS). Additionally, five potentially strong promoters from S. suis were screened for their ability to drive high-level expression of mPheS, thus endowing the carrier strain with sufficient sensitivity to the phenylalanine analog p-chloro-phenylalanine (p-Cl-phe). Insertion of these P-mPheS cassettes into a vector or into the chromosomal locus via a linked erythromycin resistance gene revealed that mPheS allele driven by promoters P0530 and P1503 renders S. suis sensitive to as low as 0.01% (or 0.5 mM) of p-Cl-phe. This offers two potential CSMs for S. suis with p-Cl-phe as a counterselective agent. P1503-mPheS was revealed to be 100% efficient for counter-selection in S. suis by application in a precise gene deletion. Using P1503-mPheS as a CSM, a two-step insertion and excision strategy for markerless genetic manipulation of S. suis were developed, supplying a powerful tool for markerless genetic manipulation of S. suis.

14.
Vet Microbiol ; 273: 109529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944391

RESUMO

Extracellular DNases/nucleases are important virulence factors in many bacteria. However, no DNase/nucleases have been reported in Mycobacterium avium subsp. paratuberculosis (MAP), which is a pathogen of paratuberculosis. Genome analyses of MAP K-10 revealed that the map3916c gene putatively encodes a nuclease. In this study, we show that MAP3916c is an extracellular nonspecific DNase requiring a divalent cation, especially Mg2+. The optimum DNase activity of MAP3916c was exhibited at 41 °C and pH 9.0. Site-directed mutagenesis studies indicated that 125-Histidine is necessary for MAP3916c DNase activity. In addition, MAP3916c DNase could destroy the neutrophil extracellular traps (NETs) induced by Phorbol 12-myristate 13-acetate in vitro and degrade the NETs induced by MAP K-10 upon infection. Furthermore, MAP3916c DNase promoted the colonization of MAP K-10, induced the formation of granulomas in the liver and small intestine and promoted the release of IL-1ß, IL-6 and TNF-α inflammatory cytokines during the infection of mice. These results indicated that MAP3916c is relevant to NETs escape and the pathogenicity of MAP. It also provides a basis for further study of the function of nuclease activity on the MAP immune evasion.


Assuntos
Desoxirribonucleases , Armadilhas Extracelulares , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium avium subsp. paratuberculosis/enzimologia , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Virulência
15.
J Antimicrob Chemother ; 77(8): 2125-2129, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640656

RESUMO

OBJECTIVES: To characterize the oxazolidinone resistance gene poxtA in a Lactobacillus salivarius isolate of pig origin. METHODS: L. salivarius isolate BNS11 was investigated for the presence of mobile oxazolidinone resistance genes by PCR. Antimicrobial susceptibility testing was performed by broth microdilution. Transfer experiments were conducted to assess horizontal transferability of the gene poxtA. WGS was carried out using a combination of Oxford Nanopore MinION/Illumina HiSeq platforms. The presence of translocatable units (TUs) carrying resistance genes was studied by PCR assays and subsequent sequence analysis. RESULTS: L. salivarius isolate BNS11 was positive for poxtA. WGS showed that it harboured two gene copies each of the poxtA and the fexB genes, which were located on the broad-host-range Inc18 plasmid pBNS11-37kb and in the chromosomal DNA, respectively. The plasmid-borne poxtA gene together with the genes fexB, vat(E) and erm(C) were located in an MDR region on plasmid pBNS11-37kb. Analysis of the genetic context showed that an approx. 11 kb poxtA-fexB fragment was integrated into the chromosomal DNA and two novel IS elements ISLasa1 and ISLasa2 were identified in this inserted fragment. PCR assays revealed that five different IS1216E-based TUs carrying the resistance genes poxtA, fexB, vat(E) or erm(C) were formed. CONCLUSIONS: To the best of our knowledge, this is the first report of the transferable oxazolidinone resistance gene poxtA in the genus Lactobacillus. In addition, the presence of IS1216E-based TUs will contribute to the persistence and accelerate the dissemination of resistance genes, including poxtA.


Assuntos
Ligilactobacillus salivarius , Oxazolidinonas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Ligilactobacillus salivarius/genética , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Plasmídeos/genética , Suínos , Resistência a Tetraciclina/genética
16.
J Antimicrob Chemother ; 77(4): 921-925, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35038329

RESUMO

OBJECTIVES: To investigate the genetic context and transferability of the oxazolidinone resistance genes cfr(D) and optrA in a porcine Vagococcus lutrae isolate. METHODS: V. lutrae isolate BN31 was screened for the presence of known oxazolidinone resistance genes via PCR assays. Conjugation experiments were carried out to assess horizontal transferability of resistance genes. WGS was performed using a combination of Nanopore MinION and Illumina HiSeq platforms. Detection of a translocatable unit (TU) was conducted by PCR. RESULTS: V. lutrae isolate BN31 harboured the oxazolidinone resistance genes cfr(D) and optrA. The optrA gene, together with the phenicol resistance gene fexA, was located on a novel pseudo-compound transposon, designated Tn7363. Tn7363 was bounded by two copies of the new insertion sequence ISVlu1, which represented a new member of the ISL3 family. A TU, comprising one copy of ISVlu1 and the segment between the two IS elements including the optrA gene, was detected. The cfr(D) gene and an erm(B) gene were identified on the broad-host-range Inc18 plasmid pBN31-cfrD, a pAMß1-like plasmid. Similar to plasmid pAMß1, plasmid pBN31-cfrD was conjugative. CONCLUSIONS: To the best of our knowledge, we report the first identification of the cfr(D) and optrA in Vagococcus. Two novel oxazolidinone resistance gene-carrying mobile genetic elements, Tn7363 and pBN31-cfrD, were identified in V. lutrae BN31. Considering their transmission potential, attention should be paid to the risk of transfer of the optrA and cfr(D) genes from V. lutrae to clinically more important bacterial pathogens.


Assuntos
Farmacorresistência Bacteriana , Enterococcus faecalis , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcaceae , Genes Bacterianos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Suínos
17.
Vet Microbiol ; 266: 109340, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033843

RESUMO

The occurrence and dissemination of linezolid-resistant Gram-positive bacteria among food-producing animals poses severe threats to public health. To date, information about the emergence of the oxazolidinone resistance gene optrA in isolates from goats is scare. In this study, the optrA-positive multiresistant E. faecalis strain SY-1 was isolated from a goat in China. E. faecalis strain SY-1 displayed a multidrug resistance profile for most of antimicrobial agents tested, including linezolid and tedizolid. MLST analysis showed that E. faecalis strain SY-1 belonged to the high-risk clone ST16. Whole genome sequencing analysis revealed that the optrA gene together with several other resistance genes was located on a novel RepA_N-family plasmid pSY-1-optrA. Detailed sequence analysis indicated that pSY-1-optrA exhibited a mosaic structure that may be the result of recombination events. In addition, a mobile bacitracin resistance operon bcrABDR was identified on plasmid pSY-1-optrA. In conclusion, this is, to our knowledge, the first report of the optrA gene in the high-risk clone E. faecalis ST16 of goat origin. Active surveillance of optrA-positive E. faecalis high-risk clones in food-producing animals is urgently warranted.


Assuntos
Doenças das Cabras , Infecções por Bactérias Gram-Positivas , Oxazolidinonas , Animais , Antibacterianos/farmacologia , Células Clonais , Farmacorresistência Bacteriana/genética , Enterococcus faecalis , Cabras , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Interleucinas , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus/veterinária , Plasmídeos/genética
18.
Res Vet Sci ; 141: 180-189, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763254

RESUMO

Johne's disease, or paratuberculosis, is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This disease occurs worldwide and results in considerable economic losses in the livestock industry. There are no effective treatments for Johne's disease, so there is an urgent need to develop an efficient, economical, and stable vaccine for MAP control. Here, a live Escherichia coli (E. coli) surface display vaccine harboring the MAP3061c gene was developed through an ice nucleation protein (INP) surface display system. The experimental data demonstrated that MAP3061c has strong immunogenicity and that the surface displayed vaccine can stimulate mice to produce high levels of antibodies. Both CD4+ and CD8+ T cell counts as well as several cytokines - including IFN-γ, IL-4, IL-10, IL-17A and IL-23 - were significantly increased in the display vaccine group. Post-vaccination challenge with MAP in mice resulted in improved fitness of the mice as demonstrated by a lack of weight loss. Pathological results revealed that the surface display vaccine could reduce the degree of pathological damage and slowed the course of disease. Taken together, our data suggests that the E. coli carrier vaccine with surface-displayed MAP3061c elicits protective immunity against MAP, providing new insights into the development of a MAP vaccine.


Assuntos
Proteínas de Membrana/imunologia , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Vacinas contra a Tuberculose/imunologia , Animais , Escherichia coli , Camundongos , Paratuberculose/prevenção & controle
20.
PLoS One ; 16(9): e0256628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492040

RESUMO

Paratuberculosis a contagious and chronic disease in domestic and wild ruminants, is caused by Mycobacterium avium subspecies paratuberculosis (MAP). Typical clinical signs include intractable diarrhea, progressive emaciation, proliferative enteropathy, and mesenteric lymphadenitis. Paratuberculosis is endemic to many parts of the world and responsible for considerable economic losses. In this study, different types of paratuberculosis and MAP in sheep and goats were investigated in Inner Mongolia, a northern province in China contiguous with two countries and eight other provinces. A total of 4434 serum samples were collected from six cities in the western, central, and eastern regions of Inner Mongolia and analyzed using the ELISA test. In addition, tissue samples were collected from seven animals that were suspected to be infected with MAP. Finally, these tissues samples were analyzed by histopathological examination followed by polymerase chain reaction (PCR), IS1311 PCR-restriction enzyme analysis (PCR-REA), and a sequence analysis of five genes. Among all 4434 ruminant serum samples collected from the six cities in the western, central, and eastern regions of Inner Mongolia, 7.60% (337/4434) measured positive for the MAP antibody. The proportions of positive MAP antibody results for serum samples collected in the western, central, and eastern regions were 5.10% (105/2058), 6.63% (85/1282), and 13.44% (147/1094), respectively. For the seven suspected infected animals selected from the herd with the highest rate of positivity, the gross pathology and histopathology of the necropsied animals were found to be consistent with the pathological features of paratuberculosis. The PCR analysis further confirmed the diagnosis of paratuberculosis. The rest of the results demonstrated that herds of sheep and goats in Inner Mongolia were infected with both MAP type II and type III. To the best of our knowledge, this is the first study of the two subtypes of MAP strains in sheep and goats in Inner Mongolia.


Assuntos
Doenças das Cabras/microbiologia , Mycobacterium avium/isolamento & purificação , Paratuberculose/microbiologia , Doenças dos Ovinos/microbiologia , Animais , China , Ensaio de Imunoadsorção Enzimática/métodos , Genótipo , Doenças das Cabras/sangue , Cabras/sangue , Cabras/microbiologia , Mycobacterium avium/patogenicidade , Paratuberculose/sangue , Sorologia/métodos , Ovinos/sangue , Ovinos/microbiologia , Doenças dos Ovinos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA