Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542475

RESUMO

Pepper anthracnose caused by Colletotrichum gloeosporioides infection is an important fungal disease and represents a serious threat to pepper yield and quality. At present, the pathogenic molecular mechanism of C. gloeosporioides is not very clear. In our study, we characterized the function of C. gloeosporioides CgNis1, a homolog of Magnaporthe oryzae MoNis1. We found that the ∆Cgnis1 mutant reduced the growth rate and was defective in conidiation. Although the rate of appressorium formation was unaffected, the germ tube was found to be abnormal. CgNis1 was shown to be involved in the H2O2 stress response and maintaining cell membrane permeability. The pathogenicity assays performed in this study indicated that the deletion of CgNIS1 is associated with virulence. Our results indicate that CgNis1 is necessary for the growth, development, and pathogenicity of the fungus. This work provides an in-depth analysis of the Nis1 protein, helps to enhance studies on pathogen-related molecular mechanisms, and provides a theoretical basis for the prevention and control of C. gloeosporioides in peppers.


Assuntos
Colletotrichum , Peróxido de Hidrogênio , Virulência/genética , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Microb Ecol ; 86(4): 2781-2789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37552473

RESUMO

To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.


Assuntos
Nitratos , Tiossulfatos , Oceano Pacífico , Clorofila A , Água do Mar/microbiologia , Enxofre/metabolismo , Nitrogênio/metabolismo , Carbono , Quitina , Filogenia
3.
Genes (Basel) ; 14(5)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37239456

RESUMO

Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 µM, 43 µM, and 43 µM for M. oryzae, while 51 µM, 49 µM, and 44 µM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 µM and 22 µM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.


Assuntos
Antifúngicos , Dípteros , Animais , Antifúngicos/farmacologia , Peptídeos Antimicrobianos , Fungos , Esporos Fúngicos , Peptídeos
4.
J Hazard Mater ; 443(Pt B): 130261, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356515

RESUMO

Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.


Assuntos
Antibacterianos , Lagoas , Animais , Humanos , Antibacterianos/farmacologia , Astacoidea/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Ecossistema , Enrofloxacina/farmacologia , Genes Bacterianos , Lagoas/análise , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA