Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
2.
Zool Res ; 45(3): 506-517, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682432

RESUMO

Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem, including tumor cells and microenvironment. Breast cancer stem cells (BCSCs) constitute a small population of cancer cells with unique characteristics, including their capacity for self-renewal and differentiation. Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer. The tumor microenvironment (TME), composed of stromal cells, immune cells, blood vessel cells, fibroblasts, and microbes in proximity to cancer cells, is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival, growth, and dissemination, thereby influencing metastatic ability. Hence, a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis. In this review, we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis, as well as the underlying regulatory mechanisms. Furthermore, we provide an overview of relevant mouse models used to study breast cancer metastasis, as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis. Overall, this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Células-Tronco Neoplásicas , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
3.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652116

RESUMO

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Assuntos
Salmonella enterica , Sorogrupo , Análise Espectral Raman , Máquina de Vetores de Suporte , Análise Espectral Raman/métodos , Salmonella enterica/isolamento & purificação , Humanos , Algoritmos
4.
Cancer Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657120

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.

5.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538920

RESUMO

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Análise Espectral Raman , Infecções por Acinetobacter/microbiologia
6.
Protein Cell ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437016

RESUMO

Tumor-resident microbiota in breast cancer promote cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increases the chemosensitivity of breast cancer by impairing BCSCs.

7.
J Biol Chem ; 300(3): 105766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367669

RESUMO

Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Proteínas de Saccharomyces cerevisiae , Proteína da Síndrome de Wiskott-Aldrich , Animais , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Sítios de Ligação , Mamíferos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
8.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408974

RESUMO

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Assuntos
Escherichia coli O157 , Nanopartículas , Animais , Camundongos , DNA Complementar , DNA , Escherichia coli O157/genética , Microbiologia de Alimentos
10.
NPJ Precis Oncol ; 8(1): 8, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200104

RESUMO

Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.

11.
Theranostics ; 14(2): 662-680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169511

RESUMO

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
12.
J Clin Lab Anal ; 38(1-2): e25008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235610

RESUMO

PURPOSE: Blood culture (BC) remains the gold standard for the diagnosis of bloodstream infections. Improving the quality of clinical BC samples, optimizing BC performance, and accelerating antimicrobial susceptibility test (AST) results are essential for the early detection of bloodstream infections and specific treatments. METHODS: We conducted a retrospective multicenter study using 450,845 BC specimens from clinical laboratories obtained from 19 teaching hospitals between 1 January 2021 and 31 December 2021. We evaluated key performance indicators (KPIs), turnaround times (TATs), and frequency distributions of processing in BC specimens. We also evaluated the AST results of clinically significant isolates for four different laboratory workflow styles. RESULTS: Across the 10 common bacterial isolates (n = 16,865) and yeast isolates (n = 1011), the overall median (interquartile range) TATs of AST results were 2.67 (2.05-3.31) and 3.73 (2.98-4.64) days, respectively. The specimen collections mainly occurred between 06:00 and 24:00, and specimen reception and loadings mainly between 08:00 and 24:00. Based on the laboratory workflows of the BCs, 16 of the 19 hospitals were divided into four groups. Time to results (TTRs) from specimen collection to the AST reports were 2.35 (1.95-3.06), 2.61 (1.98-3.32), 2.99 (2.60-3.87), and 3.25 (2.80-3.98) days for groups I, II, III, and IV, respectively. CONCLUSION: This study shows the related BC KPIs and workflows in different Chinese hospitals, suggesting that laboratory workflow optimization can play important roles in shortening time to AST reports and initiation of appropriate timely treatment.


Assuntos
Laboratórios , Sepse , Humanos , Hemocultura , Laboratórios Clínicos , Fatores de Tempo , Hospitais de Ensino , Sepse/diagnóstico
13.
J Natl Cancer Inst ; 115(12): 1586-1596, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549066

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) and programmed cell death 1 ligand 1 (PD-L1) remain imperfect in predicting clinical outcomes of triple-negative breast cancer because outcomes do not always correlate with the expression of these biomarkers. Genomic and transcriptomic alterations that may contribute to the expression of these biomarkers remain incompletely uncovered. METHODS: We evaluated PD-L1 immunohistochemistry scores (SP142 and 28-8 assays) and TILs in our triple-negative breast cancer multiomics dataset and 2 immunotherapy clinical trial cohorts. Then, we analyzed genomic and transcriptomic alterations correlated with TILs, PD-L1 expression, and patient outcomes. RESULTS: Despite TILs serving as a decent predictor for triple-negative breast cancer clinical outcomes, exceptions remained. Our study revealed that several genomic alterations were correlated with unexpected events. In particular, PD-L1 expression may cause a paradoxical relationship between TILs and prognosis in certain patients. Consequently, we classified triple-negative breast cancers into 4 groups based on PD-L1 and TIL levels. The TIL-negative PD-L1-positive and TIL-positive PD-L1-negative groups were not typical "hot" tumors; both were associated with worse prognoses and lower immunotherapy efficacy than TIL-positive PD-L1-positive tumors. Copy number variation of PD-L1 and oncogenic signaling activation were correlated with PD-L1 expression in the TIL-negative PD-L1-positive group, whereas GSK3B-induced degradation may cause undetectable PD-L1 expression in the TIL-positive PD-L1-negative group. These factors have the potential to affect the predictive function of both PD-L1 and TILs. CONCLUSIONS: Several genomic and transcriptomic alterations may cause paradoxical effects among TILs, PD-L1 expression, and prognosis in triple-negative breast cancer. Investigating and targeting these factors will advance precision immunotherapy for patients with this disease.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos do Interstício Tumoral/patologia , Variações do Número de Cópias de DNA , Prognóstico , Biomarcadores , Genômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
14.
Acta Pharm Sin B ; 13(4): 1686-1698, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139408

RESUMO

Triple-negative breast cancer (TNBC) is a nasty disease with extremely high malignancy and poor prognosis. Annexin A3 (ANXA3) is a potential prognosis biomarker, displaying an excellent correlation of ANXA3 overexpression with patients' poor prognosis. Silencing the expression of ANXA3 effectively inhibits the proliferation and metastasis of TNBC, suggesting that ANXA3 can be a promising therapeutic target to treat TNBC. Herein, we report a first-in-class ANXA3-targeted small molecule (R)-SL18, which demonstrated excellent anti-proliferative and anti-invasive activities to TNBC cells. (R)-SL18 directly bound to ANXA3 and increased its ubiquitination, thereby inducing ANXA3 degradation with moderate family selectivity. Importantly, (R)-SL18 showed a safe and effective therapeutic potency in a high ANXA3-expressing TNBC patient-derived xenograft model. Furthermore, (R)-SL18 could reduce the ß-catenin level, and accordingly inhibit the Wnt/ß-catenin signaling pathway in TNBC cells. Collectively, our data suggested that targeting degradation of ANXA3 by (R)-SL18 possesses the potential to treat TNBC.

15.
Clin Rheumatol ; 42(9): 2369-2376, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219751

RESUMO

OBJECTIVE: To evaluate the safety of secukinumab (SEC) in the treatment of patients with axial spondyloarthritis (axSpA) and concurrent hepatitis B virus (HBV) infection or latent tuberculosis infection (LTBI). METHODS: This is a retrospective cohort study. Adult axSpA patients with HBV infection or LTBI receiving SEC treatment for at least 3 months from March 2020 to July 2022 in Guangdong Provincial People's Hospital were included. Patients were screened for HBV infection and LTBI before SEC treatment. During follow-up, reactivation of HBV infection and LTBI was monitored. Relevant data were collected and analyzed. RESULTS: A total of 43 axSpA patients with HBV infection or LTBI were included, of whom 37 were with HBV infection, 6 were with LTBI. Six out of thirty-seven (16.2%) patients with axSpA and concurrent HBV infection exhibited HBV reactivation after 9.0 ± 5.7 months of SEC treatment. Among them, 3 patients had chronic HBV infection and received anti-HBV prophylaxis, 2 patients had chronic HBV infection but did not receive anti-HBV prophylaxis, and 1 patient had occult HBV infection and did not receive antiviral prophylaxis. None of the 6 axSpA patients with LTBI developed reactivation of LTBI, whether received anti-TB prophylaxis or not. CONCLUSIONS: HBV reactivation can occur in axSpA patients with different types of HBV infection undergoing SEC treatment, whether receive antiviral prophylaxis or not. Close monitoring of HBV reactivation in axSpA patients with HBV infection undergoing SEC treatment is mandatory. Anti-HBV prophylaxis may be beneficial. In contrast, SEC may be safe in axSpA patients with LTBI, even in patients not receiving anti-TB prophylaxis. Key Points •Currently, most evidence about the safety of SEC in patients with HBV infection and LTBI were from patients with psoriasis. Our study adds data about the safety of SEC in Chinese axSpA patients with concurrent HBV infection or LTBI in real-world clinical setting. •Our study showed that HBV reactivation can occur in axSpA patients with different types of HBV infection undergoing SEC treatment, whether receive antiviral prophylaxis or not. •Close monitoring of serum HBV markers, HBV DNA load, and liver function is mandatory in axSpA patients with chronic, occult, and resolved HBV infection undergoing SEC treatment. Anti-HBV prophylaxis may be beneficial in all HBsAg-positive patients and HBsAg-negative, HBcAb-positive patients at high risk of HBV reactivation who are receiving SEC therapy. •None of the axSpA patients with LTBI, whether received anti-TB prophylaxis or not, developed reactivation of LTBI in our study. SEC may be safe in axSpA patients with LTBI, even in patients not receiving anti-TB prophylaxis.


Assuntos
Hepatite B Crônica , Hepatite B , Tuberculose Latente , Adulto , Humanos , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B , Estudos Retrospectivos , Tuberculose Latente/complicações , Tuberculose Latente/tratamento farmacológico , Antivirais/uso terapêutico , Ativação Viral , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico
16.
J Exp Clin Cancer Res ; 42(1): 93, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081505

RESUMO

Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Melanoma Maligno Cutâneo
17.
J Clin Microbiol ; 61(5): e0180522, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37022167

RESUMO

Multidrug-resistant (MDR) bacteria are important public health problems. Antibiotic susceptibility testing (AST) currently uses time-consuming culture-based procedures, which cause treatment delays and increased mortality. We developed a machine learning model using Acinetobacter baumannii as an example to explore a fast AST approach using metagenomic next-generation sequencing (mNGS) data. The key genetic characteristics associated with antimicrobial resistance (AMR) were selected through a least absolute shrinkage and selection operator (LASSO) regression model based on 1,942 A. baumannii genomes. The mNGS-AST prediction model was accordingly established, validated, and optimized using read simulation sequences of clinical isolates. Clinical specimens were collected to evaluate the performance of the model retrospectively and prospectively. We identified 20, 31, 24, and 3 AMR signatures of A. baumannii for imipenem, ceftazidime, cefepime, and ciprofloxacin, respectively. Four mNGS-AST models had a positive predictive value (PPV) greater than 0.97 for 230 retrospective samples, with negative predictive values (NPVs) of 100% (imipenem), 86.67% (ceftazidime), 86.67% (cefepime), and 90.91% (ciprofloxacin). Our method classified antibacterial phenotypes with an accuracy of 97.65% for imipenem, 96.57% for ceftazidime, 97.64% for cefepime, and 98.36% for ciprofloxacin. The average reporting time of mNGS-based AST was 19.1 h, in contrast to the 63.3 h for culture-based AST, thus yielding a significant reduction of 44.3 h. mNGS-AST prediction results coincided 100% with the phenotypic AST results when testing 50 prospective samples. The mNGS-based model could be used as a rapid genotypic AST approach to identify A. baumannii and predict resistance and susceptibility to antibacterials and could be applicable to other pathogens and facilitate rational antimicrobial usage.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Estudos Retrospectivos , Cefepima , Ceftazidima , Estudos Prospectivos , Antibacterianos/farmacologia , Imipenem , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana
18.
Microbiol Spectr ; : e0412622, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877048

RESUMO

Klebsiella pneumoniae is listed by the WHO as a priority pathogen of extreme importance that can cause serious consequences in clinical settings. Due to its increasing multidrug resistance all over the world, K. pneumoniae has the potential to cause extremely difficult-to-treat infections. Therefore, rapid and accurate identification of multidrug-resistant K. pneumoniae in clinical diagnosis is important for its prevention and infection control. However, the limitations of conventional and molecular methods significantly hindered the timely diagnosis of the pathogen. As a label-free, noninvasive, and low-cost method, surface-enhanced Raman scattering (SERS) spectroscopy has been extensively studied for its application potentials in the diagnosis of microbial pathogens. In this study, we isolated and cultured 121 K. pneumoniae strains from clinical samples with different drug resistance profiles, which included polymyxin-resistant K. pneumoniae (PRKP; n = 21), carbapenem-resistant K. pneumoniae, (CRKP; n = 50), and carbapenem-sensitive K. pneumoniae (CSKP; n = 50). For each strain, a total of 64 SERS spectra were generated for the enhancement of data reproducibility, which were then computationally analyzed via the convolutional neural network (CNN). According to the results, the deep learning model CNN plus attention mechanism could achieve a prediction accuracy as high as 99.46%, with robustness score of 5-fold cross-validation at 98.87%. Taken together, our results confirmed the accuracy and robustness of SERS spectroscopy in the prediction of drug resistance of K. pneumoniae strains with the assistance of deep learning algorithms, which successfully discriminated and predicted PRKP, CRKP, and CSKP strains. IMPORTANCE This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.

19.
Signal Transduct Target Ther ; 8(1): 97, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859354

RESUMO

Our previous studies have showed that C-C motif chemokine ligand 20 (CCL20) advanced tumor progression and enhanced the chemoresistance of cancer cells by positively regulating breast cancer stem cell (BCSC) self-renewal. However, it is unclear whether CCL20 affects breast cancer progression by remodeling the tumor microenvironment (TME). Here, we observed that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were remarkably enriched in TME of CCL20-overexpressing cancer cell orthotopic allograft tumors. Mechanistically, CCL20 activated the differentiation of granulocyte-monocyte progenitors (GMPs) via its receptor C-C motif chemokine receptor 6 (CCR6) leading to the PMN-MDSC expansion. PMN-MDSCs from CCL20-overexpressing cell orthotopic allograft tumors (CCL20-modulated PMN-MDSCs) secreted amounts of C-X-C motif chemokine ligand 2 (CXCL2) and increased ALDH+ BCSCs via activating CXCR2/NOTCH1/HEY1 signaling pathway. Furthermore, C-X-C motif chemokine receptor 2 (CXCR2) antagonist SB225002 enhanced the docetaxel (DTX) effects on tumor growth by decreasing BCSCs in CCL20high-expressing tumors. These findings elucidated how CCL20 modulated the TME to promote cancer development, indicating a new therapeutic strategy by interfering with the interaction between PMN-MDSCs and BCSCs in breast cancer, especially in CCL20high-expressing breast cancer.


Assuntos
Neoplasias da Mama , Quimiocinas , Células Supressoras Mieloides , Células-Tronco Neoplásicas , Diferenciação Celular , Ligantes , Receptores de Interleucina-8B , Humanos , Animais , Linhagem Celular Tumoral
20.
J Clin Med ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769837

RESUMO

The aim of the current study was to analyse the distribution of antimicrobial drug resistance (AMR) among Pseudomonas aeruginosa (P. aeruginosa, PA) isolates from Guangdong Provincial People's Hospital (GDPH) from 2017 to 2021, and the impact of the COVID-19 outbreak on changes in the clinical distribution and drug resistance rate of P. aeruginosa to establish guidelines for empiric therapy. Electronic clinical data registry records from 2017 to 2021 were retrospectively analysed to study the AMR among P. aeruginosa strains from GDPH. The strains were identified by VITEK 2 Compact and MALDI-TOF MS, MIC method or Kirby-Bauer method for antibiotic susceptibility testing. The results were interpreted according to the CLSI 2020 standard, and the data were analysed using WHONET 5.6 and SPSS 23.0 software. A total of 3036 P. aeruginosa strains were detected in the hospital from 2017 to 2021, and they were primarily distributed in the ICU (n = 1207, 39.8%). The most frequent specimens were respiratory tract samples (59.6%). The detection rate for P. aeruginosa in 5 years was highest in September, and the population distribution was primarily male(68.2%). For the trend in the drug resistance rate, the 5-year drug resistance rate of imipenem (22.4%), aztreonam (21.5%) and meropenem (19.3%) remained at high levels. The resistance rate of cefepime decreased from 9.4% to 4.8%, showing a decreasing trend year by year (p < 0.001). The antibiotics with low resistance rates were aminoglycoside antibiotics, which were gentamicin (4.4%), tobramycin (4.3%), and amikacin (1.4%), but amikacin showed an increasing trend year by year (p = 0.008). Our analysis indicated that the detection rate of clinically resistant P. aeruginosa strains showed an upwards trend, and the number of multidrug-resistant (MDR) strains increased year by year, which will lead to stronger pathogenicity and mortality. However, after the outbreak of COVID-19 in 2020, the growth trend in the number of MDR bacteria slowed, presumably due to the strict epidemic prevention and control measures in China. This observation suggests that we should reasonably use antibiotics and treatment programs in the prevention and control of P. aeruginosa infection. Additionally, health prevention and control after the outbreak of the COVID-19 epidemic (such as wearing masks, washing hands with disinfectant, etc., which reduced the prevalence of drug resistance) led to a slowdown in the growth of the drug resistance rate of P. aeruginosa in hospitals, effectively reducing the occurrence and development of drug resistance, and saving patient's treatment costs and time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA