Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Comput Struct Biotechnol J ; 23: 1572-1583, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38650589

RESUMO

Diagnostic markers for myasthenia gravis (MG) are limited; thus, innovative approaches are required for supportive diagnosis and personalized care. Gut microbes are associated with MG pathogenesis; however, few studies have adopted machine learning (ML) to identify the associations among MG, gut microbiota, and metabolites. In this study, we developed an explainable ML model to predict biomarkers for MG diagnosis. We enrolled 19 MG patients and 10 non-MG individuals. Stool samples were collected and microbiome assessment was performed using 16S rRNA sequencing. Untargeted metabolic profiling was conducted to identify fecal amplicon significant variants (ASVs) and metabolites. We developed an explainable ML model in which the top ASVs and metabolites are combined to identify the best predictive performance. This model uses the SHapley Additive exPlanations method to generate both global and personalized explanations. Fecal microbe-metabolite composition differed significantly between groups. The key bacterial families were Lachnospiraceae and Ruminococcaceae, and the top three features were Lachnospiraceae, inosine, and methylhistidine. An ML model trained with the top 1 % ASVs and top 15 % metabolites combined outperformed all other models. Personalized explanations revealed different patterns of microbe-metabolite contributions in patients with MG. The integration of the microbiota-metabolite features and the development of an explainable ML framework can accurately identify MG and provide personalized explanations, revealing the associations between gut microbiota, metabolites, and MG. An online calculator employing this algorithm was developed that provides a streamlined interface for MG diagnosis screening and conducting personalized evaluations.

2.
Diagnostics (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667472

RESUMO

Longitudinal data, while often limited, contain valuable insights into features impacting clinical outcomes. To predict the progression of chronic kidney disease (CKD) in patients with metabolic syndrome, particularly those transitioning from stage 3a to 3b, where data are scarce, utilizing feature ensemble techniques can be advantageous. It can effectively identify crucial risk factors, influencing CKD progression, thereby enhancing model performance. Machine learning (ML) methods have gained popularity due to their ability to perform feature selection and handle complex feature interactions more effectively than traditional approaches. However, different ML methods yield varying feature importance information. This study proposes a multiphase hybrid risk factor evaluation scheme to consider the diverse feature information generated by ML methods. The scheme incorporates variable ensemble rules (VERs) to combine feature importance information, thereby aiding in the identification of important features influencing CKD progression and supporting clinical decision making. In the proposed scheme, we employ six ML models-Lasso, RF, MARS, LightGBM, XGBoost, and CatBoost-each renowned for its distinct feature selection mechanisms and widespread usage in clinical studies. By implementing our proposed scheme, thirteen features affecting CKD progression are identified, and a promising AUC score of 0.883 can be achieved when constructing a model with them.

3.
J Pers Med ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276247

RESUMO

PURPOSE: The treatment of childhood myopia often involves the use of topical atropine, which has been demonstrated to be effective in decelerating the progression of myopia. It is crucial to monitor intraocular pressure (IOP) to ensure the safety of topical atropine. This study aims to identify the optimal machine learning IOP-monitoring module and establish a precise baseline IOP as a clinical safety reference for atropine medication. METHODS: Data from 1545 eyes of 1171 children receiving atropine for myopia were retrospectively analyzed. Nineteen variables including patient demographics, medical history, refractive error, and IOP measurements were considered. The data were analyzed using a multivariate adaptive regression spline (MARS) model to analyze the impact of different factors on the End IOP. RESULTS: The MARS model identified age, baseline IOP, End Spherical, duration of previous atropine treatment, and duration of current atropine treatment as the five most significant factors influencing the End IOP. The outcomes revealed that the baseline IOP had the most significant effect on final IOP, exhibiting a notable knot at 14 mmHg. When the baseline IOP was equal to or exceeded 14 mmHg, there was a positive correlation between atropine use and End IOP, suggesting that atropine may increase the End IOP in children with a baseline IOP greater than 14 mmHg. CONCLUSIONS: MARS model demonstrates a better ability to capture nonlinearity than classic multiple linear regression for predicting End IOP. It is crucial to acknowledge that administrating atropine may elevate intraocular pressure when the baseline IOP exceeds 14 mmHg. These findings offer valuable insights into factors affecting IOP in children undergoing atropine treatment for myopia, enabling clinicians to make informed decisions regarding treatment options.

4.
J Neurosci Methods ; 403: 110038, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145720

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment for movement disorders such as Parkinson's disease (PD). However, local field potentials (LFPs) recorded through lead externalization during high-frequency stimulation (HFS) are contaminated by stimulus artifacts, which require to be removed before further analysis. NEW METHOD: In this study, a novel stimulus artifact removal algorithm based on manifold denoising, termed Shrinkage and Manifold-based Artifact Removal using Template Adaptation (SMARTA), was proposed to remove artifacts by deriving a template for each stimulus artifact and subtracting it from the signal. Under a low-dimensional manifold assumption, a matrix denoising technique called optimal shrinkage was applied to design a similarity metric such that the template for stimulus artifacts could be accurately recovered. RESULT: SMARTA was evaluated using semirealistic signals, which were the combination of semirealistic stimulus artifacts recorded in an agar brain model and LFPs of PD patients with no stimulation, and realistic LFP signals recorded in patients with PD during HFS. The results indicated that SMARTA removes stimulus artifacts with a modest distortion in LFP estimates. COMPARISON WITH EXISTING METHODS: SMARTA was compared with moving-average subtraction, sample-and-interpolate technique, and Hampel filtering. CONCLUSION: The proposed SMARTA algorithm helps the exploration of the neurophysiological mechanisms of DBS effects.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Artefatos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Algoritmos
5.
Front Neurol ; 14: 1283214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156090

RESUMO

Predicting the length of hospital stay for myasthenia gravis (MG) patients is challenging due to the complex pathogenesis, high clinical variability, and non-linear relationships between variables. Considering the management of MG during hospitalization, it is important to conduct a risk assessment to predict the length of hospital stay. The present study aimed to successfully predict the length of hospital stay for MG based on an expandable data mining technique, multivariate adaptive regression splines (MARS). Data from 196 MG patients' hospitalization were analyzed, and the MARS model was compared with classical multiple linear regression (MLR) and three other machine learning (ML) algorithms. The average hospital stay duration was 12.3 days. The MARS model, leveraging its ability to capture non-linearity, identified four significant factors: disease duration, age at admission, MGFA clinical classification, and daily prednisolone dose. Cut-off points and correlation curves were determined for these risk factors. The MARS model outperformed the MLR and the other ML methods (including least absolute shrinkage and selection operator MLR, classification and regression tree, and random forest) in assessing hospital stay length. This is the first study to utilize data mining methods to explore factors influencing hospital stay in patients with MG. The results highlight the effectiveness of the MARS model in identifying the cut-off points and correlation for risk factors associated with MG hospitalization. Furthermore, a MARS-based formula was developed as a practical tool to assist in the measurement of hospital stay, which can be feasibly supported as an extension of clinical risk assessment.

6.
Risk Manag Healthc Policy ; 16: 2469-2478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024496

RESUMO

Purpose: Approximately 20% of couples face infertility challenges and struggle to conceive naturally. Despite advances in artificial reproduction, its success hinges on sperm quality. Our previous study used five machine learning (ML) algorithms, random forest, stochastic gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and extreme gradient boosting, to model health data from 1375 Taiwanese males and identified ten risk factors affecting sperm count. Methods: We employed the CART algorithm to generate decision trees using identified risk factors to predict healthy sperm counts. Four error metrics, SMAPE, RAE, RRSE, and RMSE, were used to evaluate the decision trees. We identified the top five decision trees based on their low errors and discussed in detail the tree with the least error. Results: The decision tree featuring the least error, comprising BMI, UA, ST, T-Cho/HDL-C ratio, and BUN, corroborated the negative impacts of metabolic syndrome, particularly high BMI, on sperm count, while emphasizing the link between good sleep and male fertility. Our study also sheds light on the potentially significant influence of high BUN on spermatogenesis. Two novel risk factors, T-Cho/HDL-C and UA, warrant further investigation. Conclusion: The ML algorithm established a predictive model for healthcare personnel to assess low sperm counts. Refinement of the model using additional data is crucial for improved precision. The risk factors identified offer avenues for future investigations.

7.
Front Med (Lausanne) ; 10: 1155426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859858

RESUMO

Background and objectives: Chronic kidney disease (CKD) is a global health concern. This study aims to identify key factors associated with renal function changes using the proposed machine learning and important variable selection (ML&IVS) scheme on longitudinal laboratory data. The goal is to predict changes in the estimated glomerular filtration rate (eGFR) in a cohort of patients with CKD stages 3-5. Design: A retrospective cohort study. Setting and participants: A total of 710 outpatients who presented with stable nondialysis-dependent CKD stages 3-5 at the Shin-Kong Wu Ho-Su Memorial Hospital Medical Center from 2016 to 2021. Methods: This study analyzed trimonthly laboratory data including 47 indicators. The proposed scheme used stochastic gradient boosting, multivariate adaptive regression splines, random forest, eXtreme gradient boosting, and light gradient boosting machine algorithms to evaluate the important factors for predicting the results of the fourth eGFR examination, especially in patients with CKD stage 3 and those with CKD stages 4-5, with or without diabetes mellitus (DM). Main outcome measurement: Subsequent eGFR level after three consecutive laboratory data assessments. Results: Our ML&IVS scheme demonstrated superior predictive capabilities and identified significant factors contributing to renal function changes in various CKD groups. The latest levels of eGFR, blood urea nitrogen (BUN), proteinuria, sodium, and systolic blood pressure as well as mean levels of eGFR, BUN, proteinuria, and triglyceride were the top 10 significantly important factors for predicting the subsequent eGFR level in patients with CKD stages 3-5. In individuals with DM, the latest levels of BUN and proteinuria, mean levels of phosphate and proteinuria, and variations in diastolic blood pressure levels emerged as important factors for predicting the decline of renal function. In individuals without DM, all phosphate patterns and latest albumin levels were found to be key factors in the advanced CKD group. Moreover, proteinuria was identified as an important factor in the CKD stage 3 group without DM and CKD stages 4-5 group with DM. Conclusion: The proposed scheme highlighted factors associated with renal function changes in different CKD conditions, offering valuable insights to physicians for raising awareness about renal function changes.

8.
Front Microbiol ; 14: 1227300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829445

RESUMO

Myasthenia gravis (MG) is a neuromuscular junction disease with a complex pathophysiology and clinical variation for which no clear biomarker has been discovered. We hypothesized that because changes in gut microbiome composition often occur in autoimmune diseases, the gut microbiome structures of patients with MG would differ from those without, and supervised machine learning (ML) analysis strategy could be trained using data from gut microbiota for diagnostic screening of MG. Genomic DNA from the stool samples of MG and those without were collected and established a sequencing library by constructing amplicon sequence variants (ASVs) and completing taxonomic classification of each representative DNA sequence. Four ML methods, namely least absolute shrinkage and selection operator, extreme gradient boosting (XGBoost), random forest, and classification and regression trees with nested leave-one-out cross-validation were trained using ASV taxon-based data and full ASV-based data to identify key ASVs in each data set. The results revealed XGBoost to have the best predicted performance. Overlapping key features extracted when XGBoost was trained using the full ASV-based and ASV taxon-based data were identified, and 31 high-importance ASVs (HIASVs) were obtained, assigned importance scores, and ranked. The most significant difference observed was in the abundance of bacteria in the Lachnospiraceae and Ruminococcaceae families. The 31 HIASVs were used to train the XGBoost algorithm to differentiate individuals with and without MG. The model had high diagnostic classification power and could accurately predict and identify patients with MG. In addition, the abundance of Lachnospiraceae was associated with limb weakness severity. In this study, we discovered that the composition of gut microbiomes differed between MG and non-MG subjects. In addition, the proposed XGBoost model trained using 31 HIASVs had the most favorable performance with respect to analyzing gut microbiomes. These HIASVs selected by the ML model may serve as biomarkers for clinical use and mechanistic study in the future. Our proposed ML model can identify several taxonomic markers and effectively discriminate patients with MG from those without with a high accuracy, the ML strategy can be applied as a benchmark to conduct noninvasive screening of MG.

9.
Healthcare (Basel) ; 11(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37510441

RESUMO

Mammography is considered the gold standard for breast cancer screening. Multiple risk factors that affect breast cancer development have been identified; however, there is an ongoing debate regarding the significance of these factors. Machine learning (ML) models and Shapley Additive Explanation (SHAP) methodology can rank risk factors and provide explanatory model results. This study used ML algorithms with SHAP to analyze the risk factors between two different age groups and evaluate the impact of each factor in predicting positive mammography. The ML model was built using data from the risk factor questionnaires of women participating in a breast cancer screening program from 2017 to 2021. Three ML models, least absolute shrinkage and selection operator (lasso) logistic regression, extreme gradient boosting (XGBoost), and random forest (RF), were applied. RF generated the best performance. The SHAP values were then applied to the RF model for further analysis. The model identified age at menarche, education level, parity, breast self-examination, and BMI as the top five significant risk factors affecting mammography outcomes. The differences between age groups ranked by reproductive lifespan and BMI were higher in the younger and older age groups, respectively. The use of SHAP frameworks allows us to understand the relationships between risk factors and generate individualized risk factor rankings. This study provides avenues for further research and individualized medicine.

10.
J Clin Med ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769868

RESUMO

In many countries, especially developed nations, the fertility rate and birth rate have continually declined. Taiwan's fertility rate has paralleled this trend and reached its nadir in 2022. Therefore, the government uses many strategies to encourage more married couples to have children. However, couples marrying at an older age may have declining physical status, as well as hypertension and other metabolic syndrome symptoms, in addition to possibly being overweight, which have been the focus of the studies for their influences on male and female gamete quality. Many previous studies based on infertile people are not truly representative of the general population. This study proposed a framework using five machine learning (ML) predictive algorithms-random forest, stochastic gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and extreme gradient boosting-to identify the major risk factors affecting male sperm count based on a major health screening database in Taiwan. Unlike traditional multiple linear regression, ML algorithms do not need statistical assumptions and can capture non-linear relationships or complex interactions between dependent and independent variables to generate promising performance. We analyzed annual health screening data of 1375 males from 2010 to 2017, including data on health screening indicators, sourced from the MJ Group, a major health screening center in Taiwan. The symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error were used as performance evaluation metrics. Our results show that sleep time (ST), alpha-fetoprotein (AFP), body fat (BF), systolic blood pressure (SBP), and blood urea nitrogen (BUN) are the top five risk factors associated with sperm count. ST is a known risk factor influencing reproductive hormone balance, which can affect spermatogenesis and final sperm count. BF and SBP are risk factors associated with metabolic syndrome, another known risk factor of altered male reproductive hormone systems. However, AFP has not been the focus of previous studies on male fertility or semen quality. BUN, the index for kidney function, is also identified as a risk factor by our established ML model. Our results support previous findings that metabolic syndrome has negative impacts on sperm count and semen quality. Sleep duration also has an impact on sperm generation in the testes. AFP and BUN are two novel risk factors linked to sperm counts. These findings could help healthcare personnel and law makers create strategies for creating environments to increase the country's fertility rate. This study should also be of value to follow-up research.

11.
Front Hum Neurosci ; 16: 958521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158623

RESUMO

Background: The therapeutic effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) is related to the modulation of pathological neural activities, particularly the synchronization in the ß band (13-35 Hz). However, whether the local ß activity in the STN region can directly predict the stimulation outcome remains unclear. Objective: We tested the hypothesis that low-ß (13-20 Hz) and/or high-ß (20-35 Hz) band activities recorded from the STN region can predict DBS efficacy. Methods: Local field potentials (LFPs) were recorded in 26 patients undergoing deep brain stimulation surgery in the subthalamic nucleus area. Recordings were made after the implantation of the DBS electrode prior to its connection to a stimulator. The maximum normalized powers in the theta (4-7 Hz), alpha (7-13 Hz), low-ß (13-20 Hz), high-ß (20-35 Hz), and low-γ (40-55 Hz) subbands in the postoperatively recorded LFP were correlated with the stimulation-induced improvement in contralateral tremor or bradykinesia-rigidity. The distance between the contact selected for stimulation and the contact with the maximum subband power was correlated with the stimulation efficacy. Following the identification of the potential predictors by the significant correlations, a multiple regression analysis was performed to evaluate their effect on the outcome. Results: The maximum high-ß power was positively correlated with bradykinesia-rigidity improvement (r s = 0.549, p < 0.0001). The distance to the contact with maximum high-ß power was negatively correlated with bradykinesia-rigidity improvement (r s = -0.452, p < 0.001). No significant correlation was observed with low-ß power. The maximum high-ß power and the distance to the contact with maximum high-ß power were both significant predictors for bradykinesia-rigidity improvement in the multiple regression analysis, explaining 37.4% of the variance altogether. Tremor improvement was not significantly correlated with any frequency. Conclusion: High-ß oscillations, but not low-ß oscillations, recorded from the STN region with the DBS lead can inform stimulation-induced improvement in contralateral bradykinesia-rigidity in patients with PD. High-ß oscillations can help refine electrode targeting and inform contact selection for DBS therapy.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35955112

RESUMO

This study aimed to investigate the important predictors related to predicting positive mammographic findings based on questionnaire-based demographic and obstetric/gynecological parameters using the proposed integrated machine learning (ML) scheme. The scheme combines the benefits of two well-known ML algorithms, namely, least absolute shrinkage and selection operator (Lasso) logistic regression and extreme gradient boosting (XGB), to provide adequate prediction for mammographic anomalies in high-risk individuals and the identification of significant risk factors. We collected questionnaire data on 18 breast-cancer-related risk factors from women who participated in a national mammographic screening program between January 2017 and December 2020 at a single tertiary referral hospital to correlate with their mammographic findings. The acquired data were retrospectively analyzed using the proposed integrated ML scheme. Based on the data from 21,107 valid questionnaires, the results showed that the Lasso logistic regression models with variable combinations generated by XGB could provide more effective prediction results. The top five significant predictors for positive mammography results were younger age, breast self-examination, older age at first childbirth, nulliparity, and history of mammography within 2 years, suggesting a need for timely mammographic screening for women with these risk factors.


Assuntos
Neoplasias da Mama , Mamografia , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , Inquéritos e Questionários
13.
JMIR Serious Games ; 10(1): e35040, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315780

RESUMO

BACKGROUND: The COVID-19 outbreak has not only changed the lifestyles of people globally but has also resulted in other challenges, such as the requirement of self-isolation and distance learning. Moreover, people are unable to venture out to exercise, leading to reduced movement, and therefore, the demand for exercise at home has increased. OBJECTIVE: We intended to investigate the relationships between a Nintendo Ring Fit Adventure (RFA) intervention and improvements in running time, cardiac force index (CFI), sleep quality (Chinese version of the Pittsburgh Sleep Quality Index score), and mood disorders (5-item Brief Symptom Rating Scale score). METHODS: This was a randomized prospective study and included 80 students who were required to complete a 1600-meter outdoor run before and after the intervention, the completion times of which were recorded in seconds. They were also required to fill out a lifestyle questionnaire. During the study, 40 participants (16 males and 24 females, with an average age of 23.75 years) were assigned to the RFA group and were required to exercise for 30 minutes 3 times per week (in the adventure mode) over 4 weeks. The exercise intensity was set according to the instructions given by the virtual coach during the first game. The remaining 40 participants (30 males and 10 females, with an average age of 22.65 years) were assigned to the control group and maintained their regular habits during the study period. RESULTS: The study was completed by 80 participants aged 20 to 36 years (mean 23.20, SD 2.96 years). The results showed that the running time in the RFA group was significantly reduced. After 4 weeks of physical training, it took females in the RFA group 19.79 seconds (P=.03) and males 22.56 seconds (P=.03) less than the baseline to complete the 1600-meter run. In contrast, there were no significant differences in the performance of the control group in the run before and after the fourth week of intervention. In terms of mood disorders, the average score of the RFA group increased from 1.81 to 3.31 for males (difference=1.50, P=.04) and from 3.17 to 4.54 for females (difference=1.38, P=.06). In addition, no significant differences between the RFA and control groups were observed for the CFI peak acceleration (CFIPA)_walk, CFIPA_run, or sleep quality. CONCLUSIONS: RFA could either maintain or improve an individual's physical fitness, thereby providing a good solution for people involved in distance learning or those who have not exercised for an extended period. TRIAL REGISTRATION: ClinicalTrials.gov NCT05227040; https://clinicaltrials.gov/ct2/show/NCT05227040.

14.
J Pers Med ; 12(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35055347

RESUMO

Myasthenia gravis (MG), an acquired autoimmune-related neuromuscular disorder that causes muscle weakness, presents with varying severity, including myasthenic crisis (MC). Although MC can cause significant morbidity and mortality, specialized neuro-intensive care can produce a good long-term prognosis. Considering the outcomes of MG during hospitalization, it is critical to conduct risk assessments to predict the need for intensive care. Evidence and valid tools for the screening of critical patients with MG are lacking. We used three machine learning-based decision tree algorithms, including a classification and regression tree, C4.5, and C5.0, for predicting intensive care unit (ICU) admission of patients with MG. We included 228 MG patients admitted between 2015 and 2018. Among them, 88.2% were anti-acetylcholine receptors antibody positive and 4.7% were anti-muscle-specific kinase antibody positive. Twenty clinical variables were used as predictive variables. The C5.0 decision tree outperformed the other two decision tree and logistic regression models. The decision rules constructed by the best C5.0 model showed that the Myasthenia Gravis Foundation of America clinical classification at admission, thymoma history, azathioprine treatment history, disease duration, sex, and onset age were significant risk factors for the development of decision rules for ICU admission prediction. The developed machine learning-based decision tree can be a supportive tool for alerting clinicians regarding patients with MG who require intensive care, thereby improving the quality of care.

15.
J Acoust Soc Am ; 149(4): 2659, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33940909

RESUMO

Click-evoked otoacoustic emissions (CEOAEs) are clinically used as an objective way to infer whether cochlear functions are normal. However, because the sound pressure level of CEOAEs is typically much lower than the background noise, it usually takes hundreds, if not thousands, of repetitions to estimate the signal with sufficient accuracy. In this paper, we propose to improve the signal-to-noise ratio (SNR) of CEOAE signals within limited measurement time by optimal shrinkage (OS) in two different settings: covariance-based optimal shrinkage (cOS) and singular value decomposition-based optimal shrinkage (sOS). By simulation, the cOS consistently enhanced the SNR by 1-2 dB from a baseline method that is based on calculating the median. In real data, however, the cOS cannot enhance the SNR over 1 dB. The sOS achieved a SNR enhancement of 2-3 dB in simulation and demonstrated capability to enhance the SNR in real recordings. In addition, the level of enhancement increases as the baseline SNR decreases. An appealing property of OS is that it produces an estimate of all single trials. This property makes it possible to investigate CEOAE dynamics across a longer period of time when the cochlear conditions are not strictly stationary.


Assuntos
Ruído , Emissões Otoacústicas Espontâneas , Estimulação Acústica , Cóclea , Razão Sinal-Ruído , Fatores de Tempo
16.
Front Hum Neurosci ; 15: 797314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987369

RESUMO

Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment for the motor impairments of patients with advanced Parkinson's disease. However, mood or behavioral changes, such as mania, hypomania, and impulsive disorders, can occur postoperatively. It has been suggested that these symptoms are associated with the stimulation of the limbic subregion of the STN. Electrophysiological studies demonstrate that the low-frequency activities in ventral STN are modulated during emotional processing. In this study, we report 22 patients with Parkinson's disease who underwent STN DBS for treatment of motor impairment and presented stimulation-induced mood elevation during initial postoperative programming. The contact at which a euphoric state was elicited by stimulation was termed as the hypomania-inducing contact (HIC) and was further correlated with intraoperative local field potential recorded during the descending of DBS electrodes. The power of four frequency bands, namely, θ (4-7 Hz), α (7-10 Hz), ß (13-35 Hz), and γ (40-60 Hz), were determined by a non-linear variation of the spectrogram using the concentration of frequency of time (conceFT). The depth of maximum θ power is located approximately 2 mm below HIC on average and has significant correlation with the location of contacts (r = 0.676, p < 0.001), even after partializing the effect of α and ß, respectively (r = 0.474, p = 0.022; r = 0.461, p = 0.027). The occurrence of HIC was not associated with patient-specific characteristics such as age, gender, disease duration, motor or non-motor symptoms before the operation, or improvement after stimulation. Taken together, these data suggest that the location of maximum θ power is associated with the stimulation-induced hypomania and the prediction of θ power is frequency specific. Our results provide further information to refine targeting intraoperatively and select stimulation contacts in programming.

17.
Acta Otolaryngol ; 140(3): 230-235, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32003266

RESUMO

Background: Fluctuating hearing loss is characteristic of Ménière's disease (MD) during acute episodes. However, no reliable audiometric hallmarks are available for counselling the hearing recovery possibility.Aims/objectives: To find parameters for predicting MD hearing outcomes.Material and methods: We applied machine learning techniques to analyse transient-evoked otoacoustic emission (TEOAE) signals recorded from patients with MD. Thirty unilateral MD patients were recruited prospectively after onset of acute cochleo-vestibular symptoms. Serial TEOAE and pure-tone audiogram (PTA) data were recorded longitudinally. Denoised TEOAE signals were projected onto the three most prominent principal directions through a linear transformation. Binary classification was performed using a support vector machine (SVM). TEOAE signal parameters, including signal energy and group delay, were compared between improved (PTA improvement: ≥15 dB) and nonimproved groups using Welch's t-test.Results: Signal energy did not differ (p = .64) but a significant difference in 1-kHz (p = .045) group delay was recorded between improved and nonimproved groups. The SVM achieved a cross-validated accuracy of >80% in predicting hearing outcomes.Conclusions and significance: This study revealed that baseline TEOAE parameters obtained during acute MD episodes, when processed through machine learning technology, may provide information on outer hair cell function to predict hearing recovery.


Assuntos
Potenciais Evocados Auditivos , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Aprendizado de Máquina , Doença de Meniere/fisiopatologia , Doença Aguda , Perda Auditiva Neurossensorial/etiologia , Humanos , Doença de Meniere/complicações , Prognóstico , Estudos Prospectivos
18.
J Acoust Soc Am ; 140(6): 4193, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28040016

RESUMO

A frequency-domain iterative approach is developed to compute the change in characteristic impedance in the cochlea due to the presence of a suppressor tone. Based on this approach, a small transient wave passing by the best place (BP) of the suppressor is predicted to be partially reflected because of the suppressor-induced impedance variation. This computational approach is tested on a nonlinear model of cochlear mechanics [Liu, J. Acoust. Soc. Am. 136, 1788-1796 (2014)]. When a 9-kHz suppressor at 60 dB sound pressure level is delivered to the model, the characteristic impedance decreases by ∼20% near its BP. This localized impedance mismatch causes a forward-going wave at 4 kHz to reflect partially, and the magnitude of the reflected component is about -18 dB relative to the forward-going component near the stapes. The reflected components eventually emit from the cochlea to the ear canal, and the predicted amplitude of tone-burst evoked otoacoustic emissions (OAEs) agrees well with time-domain simulation. The present results suggest that, while the "suppressor" is meant to suppress the OAEs in experiments, its very presence might create an otherwise non-existing emission component via nonlinear scattering when its frequency is higher than that of the probe.

19.
J Chromatogr A ; 1130(1): 28-33, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16837003

RESUMO

Phthalates (endocrine disrupters) released from food-contacted plastics into aqueous solution during microwave conditioning were measured with microdialysis enrichment on-lined high-performance liquid chromatography. The released phthalates in aqueous solution were diffused through a cellular dialysis membrane into the perfusion stream and thus enriched prior to HPLC analysis. Conditions for obtaining optimum enrichment such as the hollow dialysis fiber, flow-rate and polarity modifier in perfusion stream, pH, added-salt and stirring rate in sample solution, as well as chromatographic conditions were investigated. Experimental results indicated that microdialysis enrichment with a 20-cm polysulfone hollow dialysis fiber and heptane as the perfusate at 0.10-microL/min flow-rate to collect phthalates from aqueous sample in 0.5M KCl matrix (optional pH) at 250 rpm stirring offered the optimum enriched efficiency. The dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) were well separated within 16 min by a C-18 column and eluted gradient from 40 to 90% aqueous acetonitrile (at pH 6.0) and 1.0 to 1.5 mL/min flow-rate. Detection was carried out with an UV detector at 225 nm. The enrichment factors were 14, 140 and 201 (at 0.10-microL/min perfusate flow-rate) for DMP, DEP and DBP, respectively, with less than 4% RSD. The proposed method provided a very simple, fast and eco-friendly enriched procedure to determine the extent of phthalates migration from disposable plastic materials into drinking soup.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Microdiálise/métodos , Ácidos Ftálicos/análise , Cromatografia Líquida de Alta Pressão/economia , Dibutilftalato/análise , Contaminação de Alimentos/análise , Humanos , Microdiálise/economia , Microdiálise/instrumentação , Ácidos Ftálicos/química , Reprodutibilidade dos Testes , Solventes/química , Fatores de Tempo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA