RESUMO
A new sulfur-containing carbon nanospheres encapsulated with vanadium oxide (V@SCN) is synthesized through a one-pot oxidation polymerization and then carbonization method. The prepared V@SCNs exhibit good dispersibility as a lubricant additive, which is owing to the inherited lipophilic organic functional groups in the sulfur-containing carbon shell derived from the carbonization of polythiophene. The agglomeration and precipitation of metals in the base oil are also avoided through the encapsulation of lipophilic carbon shells. The stress and thermal simulation results show that the vanadium oxide core bestows upon the carbon nanospheres enhanced load resistance and superior thermal conductivity, which contributes to their excellent tribological properties. Introducing 0.04M-V@SCN to the base oil leads to favorable tribological characteristics, such as a fourfold rise in extreme pressure capacity from 250 to 1050N, a reduction in friction coefficient from 0.2 to ≈0.1, and a substantial decrease in wear by 90.2%. The lubrication mechanism of V@SCNs as lubricant additive involves the formation of a robust protective film on the friction pair, which is formed via complex physical and chemical reactions with the friction pair during friction.
RESUMO
Intrinsically disordered regions (IDRs) in proteins can undergo liquid-liquid phase separation (LLPS) for functional assembly, but this increases the chance of forming disease-associated amyloid fibrils. Not all amyloid fibrils form through LLPS however, and the importance of LLPS relative to other pathways in fibril formation remains unclear. We investigated this question in TDP-43, a motor neuron disease and dementia-causing protein that undergoes LLPS, using thioflavin T (ThT) fluorescence, NMR, transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS) experiments. Using a fluorescence probe modified from ThT strategically designed for targeting protein assembly rather than ß-sheets and supported by TEM images, we propose that the biphasic ThT signals observed under LLPS-favoring conditions are due to the presence of amorphous aggregates. These aggregates represent an intermediate state that diverges from the direct pathway to ß-sheet-dominant fibrils. Under non-LLPS conditions in contrast (at low pH or at physiological conditions in a construct with key LLPS residues removed), the protein forms a hydrogel. Real-time WAXS data, ThT signals, and TEM images collectively demonstrate that the gelation process circumvents LLPS and yet still results in the formation of fibril-like structural networks. We suggest that the IDR of TDP-43 forms disease-causing amyloid fibrils regardless of the formation pathway. Our findings shed light on why both LLPS-promoting and LLPS-inhibiting mutants are found in TDP-43-related diseases.
RESUMO
A new method was proposed to address fault diagnosis by applying the digital twin (DT) high-fidelity behavior and the deep learning (DL) data mining capabilities. Subsequently, the proposed fault distribution GAN (FDGAN) was built to map virtual and physical entities for the data from the established test platform. Finally, the MobileViG was employed to validate the model and diagnose faults. The accuracy of the proposed method with training samples of 600 and 800 were 88.4% and 99.5%, respectively. These accuracies surpass those of other methods based on CycleGAN (98.86%), CACGAN (94.92%), ACGAN (86.45%), ML1D-GAN (82.33%), and transfer learning (99.38%). Therefore, with the integration of global connectivity, an innovative network structure, and training methods, FDGAN can effectively address challenges such as network degradation, limited feature extraction in small windows, and insufficient model robustness.
RESUMO
Singlet fission (SF), as an effective way to break through the Shockley-Queisser limit, can dramatically improve energy conversion efficiency in solar cell areas. The formation, separation, and relaxation of triplet-pair excitons directly affect the triplet yield, especially triplet-pair separation; thus, how to enhance the triplet-pair separation rate becomes one of the key points to improve SF efficiency; the decay mechanism where the singlet state is converted into two triplet states is significant for the study of the SF mechanism. Herein, we employ ultrafast transient absorption spectroscopy to study the singlet-fission process of nano-amorphous 6, 13-bis(triisopropylsilylethynyl)-Pentacene (TIPS-pentacene) films in a diamond anvil cell (DAC). A kinetics model related to the structural geometric details, as well as an evaluation of the pressure manipulation impacts, is demonstrated based on the experimental results. The results indicate that pressure manipulation enhanced the triplet-pair separation rates of SF-based materials according to their structural micro-environmental improvement when compressed in DAC, while the triplet-exciton transportation lifetime is prolonged. This work shows that pressure may effectively optimize the structural disorder of SF materials, which were found to improve triplet-pair separation efficiency and potentially offer an effective way to further improve SF efficiency.
RESUMO
As a typical natural photosensitizer, hypocrellin B (HB) offers the advantages of high molar extinction coefficient, high phototoxicity, low dark toxicity, and fast metabolism in vivo. However, the lack of tumor specificity hinders its clinical applications. Herein, we designed and synthesized a glutathione (GSH) responsive photosensitizer based on HB. The 7 - nitro - 2,1,3 - benzoxadiazole (NBD) covalently connected to HB not only served as a fluorescence quenching group but also as a GSH activating group. The photosensitizer HB-NBD showed almost no fluorescence and singlet oxygen generation as a result of the photoinduced electron transfer between HB and NBD. The designed photosensitizer HB-NBD can be activated by GSH in solutions and cancer cells, and then obtain recuperative fluorescence and photosensitive activity.
RESUMO
Herein, we present a novel approach for the preparation of alkynyl cyclopropa[c]coumarin derivatives with medium to good yields utilizing propargyl sulfonium salts as C1 synthons. Compared with Br-, using ClO4- as the counter anion significantly enhances the yield due to its lesser nucleophilic ability. This method features mild reaction conditions and a broad substrate scope with good diastereoselectivity when the substituted R1 group is at the 5-position of the coumarin scaffold.
RESUMO
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
RESUMO
Due to their inherent lattice mismatch characteristics, 2D heterostructure interfaces are considered ideal for achieving stable and sustained ultralow friction (superlubricity). Despite extensive research, the current understanding of how interface adhesion affects interlayer friction remains limited. This study focused on graphene/MoS2 and graphene/PdSe2 heterostructure interfaces, where extremely low friction coefficients of ≈10-3 are observed. In contrast, the MoS2/PdSe2 heterostructure interfaces exhibit higher friction coefficients, ≈0.02, primarily due to significant interfacial interactions driven by interlayer charge transfer, which is closely related to the ionic nature of 2D material crystals. These findings indicate that the greater the difference in ionicity between the two 2D materials comprising the sliding interfaces is, the lower the interlayer friction, providing key criteria for designing ultralow friction pairs. Moreover, the experimental results demonstrate that interlayer friction in heterostructure systems is closely associated with the material thickness and interface adhesion strength. These experimental findings are supported by molecular dynamics simulations, further validating the observed friction behavior. By integrating experimental observations with simulation analyses, this study reveals the pivotal role of interface adhesion in regulating interlayer friction and offers new insights into understanding and optimizing the frictional performance of layered solid lubricants.
RESUMO
Singlet oxygen (1O2), as a fundamental hallmark in photodynamic therapy (PDT), enables ground-breaking clinical treatment in ablating tumors and killing germs. However, accurate in vivo monitoring of 1O2 remains a significant challenge in probe design, with primary difficulties arising from inherent photo-induced side reactions with poor selectivity. Herein, we report a generalizable zwitterionic strategy for ultra-stable near-infrared (NIR) chemiluminescent probes that ensure a highly specific [2 + 2] cycloaddition between fragile electron-rich enolether units and 1O2 in both cellular and dynamic in vivo domains. Innovatively, zwitterionic chemiluminescence (CL) probes undergo a conversion into an inert ketone excited state with an extremely short lifetime through conical intersection (CI), thereby affording sufficient photostability and suppressing undesired photoreactions. Remarkably, compared with the well-known commercial 1O2 probe SOSG, the zwitterionic probe QMI exhibited an ultra-high signal-to-noise ratio (SNR, over 40-fold). Of particular significance is that the zwitterionic CL probes demonstrate excellent selectivity, high sensitivity, and outstanding photostability, thereby making a breakthrough in real-time tracking of the FDA-approved 5-ALA-mediated in vivo PDT process in living mice. This innovative zwitterionic strategy paves a new pathway for high-performance NIR chemiluminescent probes and high-fidelity feedback on 1O2 for future biological and medical applications.
RESUMO
RATIONALE AND OBJECTIVES: This study aimed to develop predictive models based on conventional magnetic resonance imaging (cMRI) and radiomics features for predicting human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC) and compare their performance. MATERIALS AND METHODS: A total of 287 patients with invasive BC in our hospital were retrospectively analyzed. All patients underwent preoperative breast MRI consisting of fat-suppressed T2-weighted imaging, axial dynamic contrast-enhanced MRI, and diffusion-weighted imaging sequences. From these sequences, radiomics features were derived. Three distinct models were established utilizing cMRI features, radiomics features, and a comprehensive model that amalgamated both. The predictive capabilities of these models were assessed using the receiver operating characteristic curve analysis. The comparative performance was then determined through the DeLong test and net reclassification improvement (NRI). RESULTS: In a randomized split, the 287 patients with BC were allotted to either training (234; 46 HER2-zero, 107 HER2-low, 81 HER2-positive) or test (53; 8 HER2-zero, 27 HER2-low, 18 HER2-positive) at an 8:2 ratio. The mean area under the curve (AUCs) for cMRI, radiomics, and comprehensive models predicting HER2 status were 0.705, 0.819, and 0.859 in training set and 0.639, 0.797, and 0.842 in test set, respectively. DeLong's test indicated that the combined model's AUC surpassed the radiomics model significantly (p < 0.05). NRI analysis verified superiority of the combined model over the radiomics for BC HER2 prediction (NRI 25.0) in the test set. CONCLUSION: The comprehensive model based on the combination of cMRI and radiomics features outperformed the single radiomics model in noninvasively predicting the three-tiered HER2 status in patients with BC.
RESUMO
Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.
RESUMO
Supramolecular adhesion material systems based on small molecules have shown great potential to unite the great contradiction between strong adhesion and reversibility. However, these material systems suffer from low adhesion strength/narrow adhesion span, limited designability, and single interaction due to fewer covalent bond content and action sites in small molecules. Herein, an ultrahigh-strength and large-span reversible adhesive enabled by a branched oligomer controllable self-aggregation strategy is developed. The dense covalent bonds present in the branched oligomers greatly enhance adhesion strength without compromising reversibility. The resulting adhesive exhibits a large-span reversible adhesion of ≈140 times, switching between ultra-strong and tough adhesion strength (5.58 MPa and 5093.92 N m-1) and ultralow adhesion (0.04 MPa and 87.656 N m-1) with alternating temperature. Moreover, reversible dynamic double cross-linking endows the adhesive with stable reversible adhesion transitions even after 100 cycles. This reversible adhesion property can also be remotely controlled via a voltage of 8 V, with a loading voltage duration of 45 s. This work paves the way for the design of reversible adhesives with long-span outstanding properties using covalent polymers and offers a pathway for the rational design of high-performance adhesives featuring both robust toughness and exceptional reversibility.
RESUMO
Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion, which aid the traversal toward various lumens, and bring revolutionary changes for targeted delivery in gastrointestinal (GI) tract. However, the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery. Here, we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers. The magnetic orientation encoded robot can move in multiple modes, with a substantially reduced drag, terrain adaptability, and improved motion velocity across the non-Newtonian liquids. Notably, the robot stiffness can be reversibly controlled with magnetically induced hardening, enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field. Furthermore, the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field. To verify the potential applications inside the body, the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots. The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.
RESUMO
Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.
RESUMO
Three long alkyl chain-bearing dibenzotriazole ionic liquids (BTA-R-BTA, R = 8, 12, and 16) were synthesized with high yield (>98%) through a simple and eco-friendly process. Their anticorrosion performance for Q235 carbon steel in 6 M hydrochloride acid was comprehensively evaluated by weight loss tests, electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy), and surface analysis techniques. As the length of the alkyl chain increased, the maximum corrosion inhibition efficiency enhanced from 55.02% (for BTA-8-BTA at 1.2 mM) to 97.10% (for BTA-12-BTA at 0.3 mM) and 98.84% (for BTA-16-BTA at 0.3 mM). Density functional theory calculation indicated that the alkyl chain length had little influence on the inhibitors' electronic structures, while molecular dynamics simulations revealed that the thickness, surface coverage, and compactness of adsorption films formed at the metal-electrolyte interface increased with the elongated alkyl chain. Corrosion inhibition efficiency is strongly correlated with the structures of the adsorption film.
RESUMO
The dispersion stability of nanomaterials in lubricants significantly influences tribological performance, yet their addition as lubricant additives often presents challenges in secondary dispersion. Here, we present a straightforward method for in situ preparation of N,S-codoped CDs (N,S-CDs)-based lubricants using heterocyclic aromatic hydrocarbons containing N/S elements in poly(ethylene glycol) (PEG) base oil by a directional ultrasound strategy. Two types of N,S-CDs were successfully prepared via the directional ultrasound treatment of PEG with benzothiazole (BTA) and benzothiadiazole (BTH) separately. The resultant N,S-CDs have a uniform distribution of N and S elements and maintain good colloidal dispersion stability in PEG even after 9 months of storage. The N,S-CDs can enter the surface gap of the friction pairs and then induce a tribochemical reaction. Benefiting from the synergistic effect of N and S activating elements, a robust and stable protective film consisting of iron sulfides, iron oxides, carbon nitrides, and amorphous carbonaceous compounds is formed, thus endowing N,S-CDs-based lubricants with improved antiwear and friction-reducing performance. Compared with pure PEG, the coefficient of friction (COF) of the N,S-CDs(BTH)-based lubricant decreased to 0.108 from 0.292, accompanied by a 91.2% reduction in wear volume, and the maximum load carrying capacity increased to 450 from 150 N.
RESUMO
The exceptional semiconducting properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) have made them highly promising for the development of future electronic and optoelectronic devices. Extensive studies of TMDs are partly associated with their ability to generate 2D-confined hot carriers above the conduction band edges, enabling potential applications that rely on such transient excited states. In this work, room-temperature spatiotemporal hot carrier dynamics in monolayer MoS2 is studied by transient absorption microscopy (TAM), featuring an initial ultrafast expansion followed by a rapid negative diffusion, and ultimately a slow long-term expansion of the band edge C-excitons. We provide direct experimental evidence to identify the abnormal negative diffusion process as a spatial contraction of the hot carriers resulting from spatial variation in the hot phonon bottleneck effect due to the Gaussian intensity distribution of the pump laser beam.
RESUMO
Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.
Assuntos
Materiais Biomiméticos , Ácido Hialurônico , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Propriedades de Superfície , Lubrificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Dopamina/química , Dopamina/farmacologia , Liberação Controlada de FármacosRESUMO
Hydrogels are ideal for antifouling materials due to their high hydrophilicity and low adhesion properties. Herein, poly(ionic liquid) hydrogels integrated with zwitterionic copolymer-functionalized gallium-based liquid metal (PMPC-GLM) microgels were successfully prepared by a one-pot reaction. Poly(ionic liquid) hydrogels (IL-Gel) were obtained by chemical cross-linking the copolymer of ionic liquid, acrylic acid, and acrylamide, and the introduction of ionic liquid (IL) significantly increased the cross-linking density; this approach consequently enhanced the mechanical and antiswelling properties of the hydrogels. The swelling ratio of IL-Gel decreased eight times compared to the original hydrogels. PMPC-GLM microgels were prepared through grafting the zwitterionic polymer PMPC onto the GLM nanodroplet surface, which exhibited efficient antifouling performance attributed to the bactericidal effect of Ga3+ and the antibacterial effect of the zwitterionic polymer layer PMPC. Based on the synergistic effect of PMPC-GLM microgels and IL, the composite hydrogels PMPC-GLM@IL-Gel not only exhibited excellent mechanical and antiswelling properties but also showed outstanding antibacterial and antifouling properties. Consequently, PMPC-GLM@IL-Gel hydrogels achieved inhibition rates of over 90% against bacteria and more than 85% against microalgae.
RESUMO
The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) â 11Bu- â S1 (21Ag-) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.