Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
EMBO Mol Med ; 16(5): 1193-1219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671318

RESUMO

Radiotherapy (RT) has been reported to induce abscopal effect in advanced hepatocellular carcinoma (HCC), but such phenomenon was only observed in sporadic cases. Here, we demonstrated that subcutaneous administration of Toll-like receptor 3 (TLR3) agonist poly(I:C) could strengthen the abscopal effect during RT through activating tumor cell ferroptosis signals in bilateral HCC subcutaneous tumor mouse models, which could be significantly abolished by TLR3 knock-out or ferroptosis inhibitor ferrostatin-1. Moreover, poly(I:C) could promote the presentation of tumor neoantigens by dendritic cells to enhance the recruitment of activated CD8+ T cells into distant tumor tissues for inducing tumor cell ferroptosis during RT treatment. Finally, the safety and feasibility of combining poly(I:C) with RT for treating advanced HCC patients were further verified in a prospective clinical trial. Thus, enhancing TLR3 signaling activation during RT could provide a novel strategy for strengthening abscopal effect to improve the clinical benefits of advanced HCC patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Poli I-C , Receptor 3 Toll-Like , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/agonistas , Animais , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patologia , Humanos , Camundongos , Poli I-C/farmacologia , Masculino , Feminino , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Pessoa de Meia-Idade
4.
Obes Surg ; 34(5): 1726-1736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536625

RESUMO

PURPOSE: This study aims to systematically review and meta-analyze the evidence on the risk of esophageal adenocarcinoma (EAC) following metabolic and bariatric surgery (MBS). MATERIALS AND METHODS: A systematic literature search was conducted on the China National Knowledge Infrastructure (CNKI), Wanfang, EMBASE, MEDLINE, Web of Science, The Cochrane Library, and PubMed databases. Meta-analysis utilized odds ratios (ORs) and 95% confidence intervals (CIs) to analyze the correlation between MBS and the risk of EAC. Meta-analysis was performed using STATA software (version 12.0). RESULTS: Fourteen studies involving patients with obesity undergoing bariatric surgery and control groups receiving conventional treatment were included. The meta-analysis indicated a reduction in the overall incidence of esophageal cancer after bariatric surgery (OR = 0.69, 95% CI: 0.51-0.95, P = 0.022). Subgroup analysis results demonstrated a decreased risk of EAC in European patients with obesity undergoing MBS treatment (OR: 0.60, 95% CI: 0.38-0.95, P = 0.028). In studies with a sample size greater than or equal to 100,000 patients, the risk of EAC in patients with obesity undergoing MBS was significantly lower than the non-surgery group (OR: 0.59, 95% CI: 0.42-0.83, P = 0.003). Articles published before 2020 and those published in 2020 or earlier showed a significant difference in the incidence of EAC between the surgery and non-surgery groups (OR: 0.57, 95% CI: 0.43-0.75, P < 0.001). The risk of EAC in patients with obesity with a follow-up time of less than 5 years was statistically significant (OR: 0.46, 95% CI: 0.25-0.82, P = 0.009). CONCLUSION: Our meta-analysis results suggest a reduced risk of esophageal cancer in patients with obesity after bariatric surgery. PROSPERO REGISTRATION: CRD 42024505177.


Assuntos
Adenocarcinoma , Cirurgia Bariátrica , Neoplasias Esofágicas , Obesidade Mórbida , Humanos , Estudos Retrospectivos , Obesidade Mórbida/cirurgia , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/cirurgia , Adenocarcinoma/epidemiologia , Adenocarcinoma/etiologia , Adenocarcinoma/cirurgia , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/cirurgia
5.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535698

RESUMO

Carbon-based materials are one of the ideal negative electrode materials for potassium ion batteries. However, the limited active sites and sluggish diffusion ion kinetics still hinder its commercialization process. To address these problems, we design a novel carbon composite anode, by confining highly reactive short-chain sulfur molecules into nitrogen-doped hollow carbon nanospheres (termed SHC-450). The formation process involves the controlled synthesis of hollow polyaniline (PANI) nanospheres as precursors via an Ostwald ripening mechanism and subsequent sulfuration treatment. The high content of constrained short-chain sulfur molecules (20.94 wt%) and considerable N (7.15 wt%) ensure sufficient active sites for K+ storage in SHC-450. Accordingly, the SHC-450 electrode exhibits a high reversible capacity of 472.05 mAh g-1 at 0.1 A g-1 and good rate capability (172 mAh g-1 at 2 A g-1). Thermogravimetric analysis shows that SHC-450 has impressive thermal stability to withstand a high temperature of up to 640 °C. Ex situ spectroscopic characterizations reveal that the short-chain sulfur provides high capacity through reversible formation of K2S. Moreover, its special hollow structure not only provides ample space for highly active short-chain sulfur reactants but also effectively mitigates volume expansion during the sulfur conversion process. This work offers new perspectives on enhanced K+ storage performance from an interesting anode design and the space-limited domain principle.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37871091

RESUMO

Recently, deep learning (DL) has enabled rapid advancements in electrocardiogram (ECG)-based automatic cardiovascular disease (CVD) diagnosis. Multi-lead ECG signals have lead systems based on the potential differences between electrodes placed on the limbs and the chest. When applying DL models, ECG signals are usually treated as synchronized signals arranged in Euclidean space, which is the abstraction and generalization of real space. However, conventional DL models typically merely focus on temporal features when analyzing Euclidean data. These approaches ignore the spatial relationships of different leads, which are physiologically significant and useful for CVD diagnosis because different leads represent activities of specific heart regions. These relationships derived from spatial distributions of electrodes can be conveniently created in non-Euclidean data, making multi-lead ECGs better conform to their nature. Considering graph convolutional network (GCN) adept at analyzing non-Euclidean data, a novel spatial-temporal residual GCN for CVD diagnosis is proposed in this work. ECG signals are firstly divided into single-channel patches and transferred into nodes, which will be connected by spatial-temporal connections. The proposed model employs residual GCN blocks and feed-forward networks to alleviate over-smoothing and over-fitting. Moreover, residual connections and patch dividing enable the capture of global and detailed spatial-temporal features. Experimental results reveal that the proposed model achieves at least a 5.85% and 6.80% increase in F1 over other state-of-the-art algorithms with similar parameters and computations in both PTB-XL and Chapman databases. It indicates that the proposed model provides a promising avenue for intelligent diagnosis with limited computing resources.

7.
J Hazard Mater ; 460: 132453, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677969

RESUMO

Tetracycline (TC) is a commonly used antibiotic that affects various physiological processes in plants. However, its negative effects on plants remain poorly understood at the molecular level. To ascertain the TC toxicity in the roots, transcriptomic, cytological, and physiological analyses were performed to explore the molecular mechanisms of TC influencing the growth of hulless barley root. At a low concentration (1 mg/L), TC promoted root growth by upregulating the genes related to the flavonoid pathway. At high concentrations (10, 100, and 200 mg/L), TC downregulated genes related to homologous recombination in the root meristem zone and inhibited the mitosis index by 16.4%. Disruption of the DNA repair process can lead to chromosomal aberrations, resulting in a 6.8% C-mitosis rate in the most severe cases. Finally, root growth was inhibited by TC, as evidenced by a reduction in root viability, an increase in reactive oxygen species content, and an inhibition of root length. Cross-comparison of physiological and cytological characterizations and transcriptomic information revealed changes in genetic processes under TC stress. Overall, we present an early genetic strategy to study the significant influence of TC stress on roots.


Assuntos
Hordeum , Hordeum/genética , Meristema/genética , Tetraciclina/toxicidade , Antibacterianos/toxicidade , Flavonoides
8.
Bioengineering (Basel) ; 10(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37237677

RESUMO

Most of the existing multi-lead electrocardiogram (ECG) detection methods are based on all 12 leads, which undoubtedly results in a large amount of calculation and is not suitable for the application in portable ECG detection systems. Moreover, the influence of different lead and heartbeat segment lengths on the detection is not clear. In this paper, a novel Genetic Algorithm-based ECG Leads and Segment Length Optimization (GA-LSLO) framework is proposed, aiming to automatically select the appropriate leads and input ECG length to achieve optimized cardiovascular disease detection. GA-LSLO extracts the features of each lead under different heartbeat segment lengths through the convolutional neural network and uses the genetic algorithm to automatically select the optimal combination of ECG leads and segment length. In addition, the lead attention module (LAM) is proposed to weight the features of the selected leads, which improves the accuracy of cardiac disease detection. The algorithm is validated on the ECG data from the Huangpu Branch of Shanghai Ninth People's Hospital (defined as the SH database) and the open-source Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTB database). The accuracy for detection of arrhythmia and myocardial infarction under the inter-patient paradigm is 99.65% (95% confidence interval: 99.20-99.76%) and 97.62% (95% confidence interval: 96.80-98.16%), respectively. In addition, ECG detection devices are designed using Raspberry Pi, which verifies the convenience of hardware implementation of the algorithm. In conclusion, the proposed method achieves good cardiovascular disease detection performance. It selects the ECG leads and heartbeat segment length with the lowest algorithm complexity while ensuring classification accuracy, which is suitable for portable ECG detection devices.

9.
Food Chem X ; 18: 100685, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37131849

RESUMO

Mixed fermentation using saccharomyces cerevisiae and non-saccharomyces cerevisiae has become one of the main research strategies to improve wine aroma. Hence, this study applied the mixed fermentation technique using Pichia kudriavzevii and Saccharomyces cerevisiae to brew Cabernet Sauvignon wine and to investigate the effects of inoculation timing and inoculation ratio on the polyphenolics, antioxidant activity and aroma of the resulting wine. The results showed that mixed fermentation significantly improved the amounts of flavan-3-ols. In particular, S1:5 had the highest amounts of (-)-catechin and procyanidin B1 (73.23 mg/L and 46.59 mg/L), while S1:10 had the highest (-)-epicatechin content (57.95 mg/L). Meanwhile, S1:10 showed the strongest FRAP, CUPRAC and ABTS + activities (31.46 %, 25.38 % and 13.87 % higher than that of CK, respectively). In addition, mixed fermentation also increased the amounts of phenylethanol, isoamyl alcohol and ethyl esters, which enhanced the rose-like and fruity flavor of wine. This work used a friendly non-saccharomyces cerevisiae alongside appropriate inoculation strategies to provide an alternative approach for improved wine aroma and phenolic profile.

10.
Front Physiol ; 14: 1079503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814476

RESUMO

In this paper, a fully-mapped field programmable gate array (FPGA) accelerator is proposed for artificial intelligence (AI)-based analysis of electrocardiogram (ECG). It consists of a fully-mapped 1-D convolutional neural network (CNN) and a fully-mapped heart rate estimator, which constitute a complementary dual-function analysis. The fully-mapped design projects each layer of the 1-D CNN to a hardware module on an Intel Cyclone V FPGA, and a virtual flatten layer is proposed to effectively bridge the feature extraction layers and fully-connected layer. Also, the fully-mapped design maximizes computational parallelism to accelerate CNN inference. For the fully-mapped heart rate estimator, it performs pipelined transformations, self-adaptive threshold calculation, and heartbeat count on the FPGA, without multiplexed usage of hardware resources. Furthermore, heart rate calculation is elaborately analyzed and optimized to remove division and acceleration, resulting in an efficient method suitable for hardware implementation. According to our experiments on 1-D CNN, the accelerator can achieve 43.08× and 8.38× speedup compared with the software implementations on ARM-Cortex A53 quad-core processor and Intel Core i7-8700 CPU, respectively. For the heart rate estimator, the hardware implementations are 25.48× and 1.55× faster than the software implementations on the two aforementioned platforms. Surprisingly, the accelerator achieves an energy efficiency of 63.48 GOPS/W, which obviously surpasses existing studies. Considering its power consumption is only 67.74 mW, it may be more suitable for resource-limited applications, such as wearable and portable devices for ECG monitoring.

11.
Poult Sci ; 102(3): 102479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669355

RESUMO

This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1ß, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1ß were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.


Assuntos
Antioxidantes , Galinhas , Ácido Clorogênico , Animais , Masculino , Ração Animal/análise , Antioxidantes/metabolismo , Peso Corporal , Catalase/metabolismo , Galinhas/metabolismo , Ácido Clorogênico/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Diquat/toxicidade , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Interleucina-1beta , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase/metabolismo
12.
Comput Biol Med ; 152: 106390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473340

RESUMO

The utilization of unlabeled electrocardiogram (ECG) data is always a critical topic in artificial intelligence healthcare, as the manual annotation for ECG data is a time-consuming task that requires much medical expertise. The recent development of self-supervised learning, especially contrastive learning, has provided helpful inspirations to solve this problem. In this paper, a joint cross-dimensional contrastive learning algorithm for unlabeled 12-lead ECGs is proposed. Unlike existing studies about ECG contrastive learning, our algorithm can simultaneously exploit unlabeled 1-dimensional ECG signals and 2-dimensional ECG images. A cross-dimensional contrastive learning method enhances the interaction between 1-dimensional and 2-dimensional ECG data, resulting in a more effective self-supervised feature learning. Combining this cross-dimensional contrastive learning, a 1-dimensional contrastive learning with ECG-specific transformations is employed to constitute a joint model. To pre-train this joint model, a new hybrid contrastive loss balances the 2 algorithms and uniformly describes the pre-training target. In the downstream classification task, the features learned by our algorithm shows impressive advantages. Compared with other representative methods, it achieves a at least 5.99% increase in accuracy. For real-world applications, an efficient heterogenous deployment on a "system-on-a-chip" (SoC) is designed. According to our experiments, the model can process 12-lead ECGs in real-time on the SoC. Furthermore, this heterogenous deployment can achieve a 14 × faster inference than the pure software deployment on the same SoC. In summary, our algorithm is a good choice for unlabeled 12-lead ECG utilization, the proposed heterogenous deployment makes it more practical in real-world applications.


Assuntos
Inteligência Artificial , Eletrocardiografia , Algoritmos , Instalações de Saúde , Software
14.
Poult Sci ; 101(11): 102108, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099659

RESUMO

This study was designed to examine the effects of different levels of beta-sitosterol (BS) supplementation on growth performance, serum biochemical indices, redox status, and intestinal permeability-related parameters and morphology of young broilers. Two hundred and forty male Arbor Acres broiler chicks were allocated into 5 groups of 6 replicates with 8 birds each, and fed a basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg BS for 21-d, respectively. The BS quadratically decreased feed conversion ratio during 1 to 14 d and 1 to 21 d, with its effect being more prominent at 25 or 50 mg/kg (P < 0.05). The BS linearly and quadratically reduced 14-d plasma diamine oxidase activity and D-lactate level, and this effect was more pronounced when its supplemental level was 25 or 50 mg/kg (P < 0.05). The BS linearly increased duodenal villus height (VH) and quadratically increased jejunal VH and ratio of VH and crypt depth (CD) at 14 d, and these effects in 25 mg/kg group were more remarkable (P < 0.05). Similarly, BS linearly or quadratically increased VH and ratio of VH and CD, but decreased CD in the jejunum and ileum at 21 d, with these effects being more pronounced at 50 mg/kg (P < 0.05). The BS supplementation especially at 50 or 75 mg/kg linearly or quadratically reduced 14-d serum and 21-d hepatic malondialdehyde concentration, and increased serum glutathione peroxidase and catalase activities at 14 and 21 d (P < 0.05). Moreover, the BS administration linearly and/or quadratically increased glutathione peroxidase, catalase, and superoxide dismutase activities and glutathione level, and reduced malondialdehyde accumulation in the intestinal mucosa at 14 and/or 21 d, and these consequences were more significant in 50 to 100 mg/kg BS-supplemented groups (P < 0.05). The results demonstrated that BS administration could improve growth performance, intestinal barrier function, and antioxidant status of broilers at an early age, with these effects being more pronounced at a level of 50 mg/kg.


Assuntos
Antioxidantes , Galinhas , Animais , Masculino , Antioxidantes/metabolismo , Catalase/metabolismo , Ração Animal/análise , Glutationa Peroxidase/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Malondialdeído/metabolismo , Permeabilidade
15.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36113894

RESUMO

BACKGROUND: Personalized neoantigen vaccine could induce a robust antitumor immune response in multiple cancers, whose efficacy could be further enhanced by combining with programmed cell death 1 blockade (α-PD-1). However, the corresponding immune response and synergistic mechanisms remain largely unclear. Here, we aimed to develop clinically available combinational therapeutic strategy and further explore its potential antitumor mechanisms in hepatocellular carcinoma (HCC). METHODS: Neoantigen peptide vaccine (NeoVAC) for murine HCC cell line Hepa1-6 was developed and optimized by neoantigen screening and adjuvant optimization. Then the synergistic efficacy and related molecular mechanisms of NeoVAC combined with α-PD-1 in HCC were evaluated by orthotopic HCC mouse model, single-cell RNA sequencing, tetramer flow cytometry, immunofluorescence, etc. The tumor-killing capacity of CD8+ tissue-resident memory T cells (CD8+ TRMs) was assessed by orthotopic HCC mouse model, and autologous patient-derived cells. RESULTS: NeoVAC, which consisted of seven high immunogenic neoantigen peptides and clinical-grade Poly(I:C), could generate a strong antitumor immune response in HCC mouse models. Significantly, its efficacy could be further improved by combining with α-PD-1, with 80% of durable tumor regression and long-term immune memory in orthotopic HCC models. Moreover, in-depth analysis of the tumor immune microenvironment showed that the percentage of CD8+ TRMs was remarkedly increased in NeoVAC plus α-PD-1 treatment group, and positively associated with the antitumor efficacy. In vitro and in vivo T-cell cytotoxicity assay further confirmed the strong tumor-killing capacity of CD8+ TRMs sorting from orthotopic mouse HCC or patient's HCC tissue. CONCLUSIONS: This study showed that NeoVAC plus α-PD-1 could induce a strong antitumor response and long-term tumor-specific immune memory in HCC by increasing CD8+ TRMs infiltration, which might serve as a potential immune-therapeutic target for HCC.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Vacinas Anticâncer/uso terapêutico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Células T de Memória , Camundongos , Peptídeos/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral , Vacinas de Subunidades Antigênicas/uso terapêutico
16.
Chin J Integr Med ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947230

RESUMO

OBJECTIVE: To investigate the effects of Pien Tze Huang (PZH) on the migration and invasion of HCC cells and underlying molecular mechanism. METHODS: Cell counting kit-8 (CCK-8) was applied to evaluate the cell viabilities of SMMC-7721, SK-Hep-1, C3A and HL-7702 (6 × 103 cells/well) co-incubated with different concentrations of PZH (0, 0.2, 0.4, 0.6, 0.8 mg/mL) for 24 h. Transwell, wound healing assay, CCK-8 and Annexin V-FITC/PI staining were conducted to investigate the effects of PZH on the migration, invasion, proliferation and apoptosis of SK-Hep-1 and SMMC-7721 cells (650 µ g/mL for SK-Hep-1 cells and 330 µ g/mL for SMMC-7721 cells), respectively. In vivo, lung metastasis mouse model constructed by tail vein injection of HCC cells was used for evaluating the anti-metastasis function of PZH. SK-Hep-1 cells (106 cells/200 µ L per mice) were injected into B-NDG mice via tail vein. Totally 8 mice were randomly divided into PZH and control groups, 4 mice in each group. After 2-d inoculation, mice in the PZH group were administered with PZH (250 mg/kg, daily) and mice in the control group received only vehicle (PBS) from the 2nd day after xenograft to day 17. Transcriptome analysis based on RNA-seq was subsequently used for deciphering anti-tumor mechanism of PZH. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to verify RNA-seq results. Luciferase reporter assay was performed to examine the transcriptional activity of yes-associated protein (YAP). RESULTS: PZH treatment significantly inhibited the migration, invasion, proliferation and promoted the apoptosis of HCC cells in vitro and in vivo (P<0.01). Transcriptome analysis indicated that Hippo signaling pathway was associated with anti-metastasis function of PZH. Mechanical study showed PZH significantly inhibited the expressions of platelet derived growth factor receptor beta (PDGFRB), YAP, connective tissue growth factor (CCN2), N-cadherin, vimentin and matrix metallopeptidase 2 (MMP2, P<0.01). Meanwhile, the phosphorylation of YAP was also enhanced by PZH treatment in vitro and in vivo. Furthermore, PZH played roles in inhibiting the transcriptional activity of YAP. CONCLUSION: PZH restrained migration, invasion and epithelial-mesenchymal transition of HCC cells through repressing PDGFRB/YAP/CCN2 axis.

17.
Biosensors (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884327

RESUMO

In the past few years, deep learning-based electrocardiogram (ECG) compression methods have achieved high-ratio compression by reducing hidden nodes. However, this reduction can result in severe information loss, which will lead to poor quality of the reconstructed signal. To overcome this problem, a novel quality-guaranteed ECG compression method based on a binary convolutional auto-encoder (BCAE) equipped with residual error compensation (REC) was proposed. In traditional compression methods, ECG signals are compressed into floating-point numbers. BCAE directly compresses the ECG signal into binary codes rather than floating-point numbers, whereas binary codes take up fewer bits than floating-point numbers. Compared with the traditional floating-point number compression method, the hidden nodes of the BCAE network can be artificially increased without reducing the compression ratio, and as many hidden nodes as possible can ensure the quality of the reconstructed signal. Furthermore, a novel optimization method named REC was developed. It was used to compensate for the residual between the ECG signal output by BCAE and the original signal. Complemented with the residual error, the restoration of the compression signal was improved, so the reconstructed signal was closer to the original signal. Control experiments were conducted to verify the effectiveness of this novel method. Validated by the MIT-BIH database, the compression ratio was 117.33 and the root mean square difference (PRD) was 7.76%. Furthermore, a portable compression device was designed based on the proposed algorithm using Raspberry Pi. It indicated that this method has attractive prospects in telemedicine and portable ECG monitoring systems.


Assuntos
Compressão de Dados , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas , Compressão de Dados/métodos , Eletrocardiografia , Humanos
19.
Indian J Cancer ; 58(2): 225-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753624

RESUMO

BACKGROUND: The robotic technique has been established as an alternative approach to laparoscopy for colorectal surgery. The aim of this study was to compare the short-term outcomes of robot-assisted and laparoscopic surgery in colorectal cancer. METHODS: The cases of robot-assisted or laparoscopic colorectal resection were collected retrospectively between July 2015 and September 2018. We evaluated patient demographics, perioperative characteristics, and pathologic examinations. Short-term outcomes included time to passage of flatus and length of postoperative hospital stay. RESULTS: A total of 580 patients were included in the study. There were 271 patients in the robotic colorectal surgery (RCS) group and 309 in the laparoscopic colorectal surgery (LCS) group. The time to passage of flatus in the RCS group was 3.62 days shorter than the LCS group. The total costs were increased by 2,258.8 USD in the RCS group compared to the LCS group (P < 0.001). CONCLUSION: The present study suggests that colorectal cancer robotic surgery was more beneficial to patients because of a shorter postoperative recovery time of bowel function and shorter hospital stays.


Assuntos
Neoplasias Colorretais/mortalidade , Cirurgia Colorretal/mortalidade , Laparoscopia/mortalidade , Procedimentos Cirúrgicos Robóticos/mortalidade , Idoso , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
20.
Mol Neurobiol ; 58(7): 3471-3483, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733293

RESUMO

Ketamine is a widely used analgesic and anesthetic in obstetrics and pediatrics. Ketamine is known to promote neuronal death and cognitive dysfunction in the brains of humans and animals during development. Monosialotetrahexosyl ganglioside (GM1), a promoter of brain development, exerts neuroprotective effects in many neurological disease models. Here, we investigated the neuroprotective effect of GM1 and its potential underlying mechanism against ketamine-induced apoptosis of rats. Seven-day-old Sprague Dawley (SD) rats were randomly divided into the following four groups: (1) group C (control group: normal saline was injected intraperitoneally); (2) group K (ketamine); (3) group GM1 (GM1 was given before normal saline injection); and (4) GM1+K group (received GM1 30 min before continuous exposure to ketamine). Each group contained 15 rats, received six doses of ketamine (20 mg/kg), and was injected with saline every 90 min. The Morris water maze (MWM) test, the number of cortical and hippocampal cells, apoptosis, and AKT/GSK3ß pathway were analyzed. To determine whether GM1 exerted its effect via the PI3K/AKT/GSK3ß pathway, PC12 cells were incubated with LY294002, a PI3K inhibitor. We found that GM1 protected against ketamine-induced apoptosis in the hippocampus and cortex by reducing the expression of Bcl-2 and Caspase-3, and by increasing the expression of Bax. GM1 treatment increased the expression of p-AKT and p-GSK3ß. However, the anti-apoptotic effect of GM1 was eliminated after inhibiting the phosphorylation of AKT. We showed that GM1 lessens ketamine-induced apoptosis in the hippocampus and cortex of young rats by regulating the PI3K/AKT/GSK3ß pathway. Taken together, GM1 may be a potential preventive treatment for the neurotoxicity caused by continuous exposure to ketamine.


Assuntos
Córtex Cerebral/metabolismo , Gangliosídeo G(M1)/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Ketamina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anestésicos Dissociativos/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA