Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2309724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239083

RESUMO

The commercialization of silicon anode for lithium-ion batteries has been hindered by severe structure fracture and continuous interfacial reaction against liquid electrolytes, which can be mitigated by solid-state electrolytes. However, rigid ceramic electrolyte suffers from large electrolyte/electrode interfacial resistance, and polymer electrolyte undergoes poor ionic conductivity, both of which are worsened by volume expansion of silicon. Herein, by dispersing Li1.3Al0.3Ti1.7(PO4)3 (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) and poly(ethylene oxide) (PEO) matrix, the PVDF-HFP/PEO/LATP (PHP-L) solid-state electrolyte with high ionic conductivity (1.40 × 10-3 S cm-1), high tensile strength and flexibility is designed, achieving brilliant compatibility with silicon nanosheets. The chemical interactions between PVDF-HFP and PEO, LATP increase amorphous degree of polymer, accelerating Li+ transfer. Good flexibility of the PHP-L contributes to adaptive structure variation of electrolyte with silicon expansion/shrinkage, ensuring swift interfacial ions transfer. Moreover, the solid membrane with high tensile limits electrode structural degradation and eliminates continuous interfacial growth to form stable 2D solid electrolyte interface (SEI) film, achieving superior cyclic performance to liquid electrolytes. The Si//PHP-L15//LiFePO4 solid-state full-cell exhibits stable lithium storage with 81% capacity retention after 100 cycles. This work demonstrates the effectiveness of composite solid electrolyte in addressing fundamental interfacial and performance challenges of silicon anodes.

2.
Small ; 19(47): e2303019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548139

RESUMO

Nanostructured transitional metal compounds (TMCs) have demonstrated extraordinary promise for high-efficient and rapid lithium storage. However, good performance is usually limited to electrodes with low mass loading (≤1.0 mg cm-2 ) and is difficult to realize at higher mass loading due to increased electrons/ions transport limitations in the thicker electrode. Herein, the multi-dimensional synergistic nanoarchitecture design of graphene-wrapped MnO@carbon microcapsules (capsule-like MnO@C-G) is reported, which demonstrates impressive mass loading-independent lithium storage properties. Highly porous MnO nanoclusters assembled by 0D nanocrystals facilitate sufficient electrolyte infiltration and shorten the solid-state ions transport path. 1D carbon shell, 2D graphene, and 3D continuous network with tight interconnection accelerate electrons transport inside the thick electrode. The capsule-like MnO@C-G delivers ultrahigh gravimetric capacity retention of 91.0% as the mass loading increases 4.3 times, while the areal capacities increase linearly with the mass loading at various current densities. Specifically, the capsule-like MnO@C electrode delivers a remarkable areal capacity of 2.0 mAh cm-2 at a mass loading of 3.0 mg cm-2 . Moreover, the capsule-like MnO@C also demonstrates excellent performance in full battery applications. This study demonstrates the effectiveness of multi-dimensional synergistic nanoarchitecture in achieving mass loading-independent performance, which can be extended to other TMCs for electrochemical energy storage.

3.
J Am Chem Soc ; 145(34): 18748-18752, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606281

RESUMO

In this study, single Ni2 clusters (two Ni atoms bridged by a lattice oxygen) are successfully synthesized on monolayered CuO. They exhibit a remarkable activity toward low-temperature CO2 thermal dissociation, in contrast to cationic Ni atoms that nondissociatively adsorb CO2 and metallic Ni ones that are chemically inert for CO2 adsorption. Density functional theory calculations reveal that the Ni2 clusters can significantly alter the spatial symmetry of their unoccupied frontier orbitals to match the occupied counterpart of the CO2 molecule and enable its low-temperature dissociation. This study may help advance single-cluster catalysis and exploit the unexcavated mechanism for low-temperature CO2 activation.

4.
RSC Adv ; 13(6): 4102-4112, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756567

RESUMO

Integrating silicon (Si) and graphitic carbon into micron-sized composites by spray-drying holds great potential in developing advanced anodes for high-energy-density lithium-ion batteries (LIBs). However, common graphite particles as graphitic carbon are always too large in three-dimensional size, resulting in inhomogeneous hybridization with nanosized Si (NSi); in addition, the rate capability of graphite is poor owing to sluggish intercalation kinetics. Herein, we integrated graphite nanosheets (GNs) with NSi to prepare porous NSi-GN-C microspheres by spray-drying and subsequent calcination with the assistance of glucose. Two-dimensional GNs with average thickness of ∼80 nm demonstrate superior lithium storage capacity, high conductivity, and flexibility, which could improve the electronic transfer kinetics and structural stability. Moreover, the porous structure buffers the volume expansion of Si during the lithiation process. The obtained NSi-GN-C microspheres manifest excellent electrochemical performance, including high initial coulombic efficiency of 85.9%, excellent rate capability of 94.4% capacity retention after 50 repeated high-rate tests, and good cyclic performance for 500 cycles at 1.0 A g-1. Kinetic analysis and in situ impedance spectra reveal dominant pseudocapacitive behavior with rapid and stable Li+ insertion/extraction processes. Ex situ morphology characterization demonstrates the ultra-stable integrated structure of the NSi-GN-C. The highly active GN demonstrates great potential to improve the lithium storage properties of Si, which provides new opportunity for constructing high-performance anodes for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA