Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Plants (Basel) ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794464

RESUMO

Limited research has focused on nanoparticle (NP) applications' impact on edible wheat parts in a field environment. Here, we studied the nutritional quality of edible parts of wheat (Triticum aestivum L.) with a field experiment by spraying MnFe2O4 nanoparticles. Wheat was foliar sprayed with 0, 25, 50, and 100 mg/L composite manganese ferrite (MnFe2O4) NPs during 220 d of a growth period. Ionic controls were prepared using the conventional counterparts (MnSO4·H2O and FeSO4·7H2O) to compare with the 100 mg/L MnFe2O4 NPs. After three consecutive foliar applications, nanoparticles demonstrated a substantial elevation in grain yield and harvest index, exhibiting a noteworthy increase to 5.0 ± 0.12 t/ha and 0.46 ± 0.001 in the 100 mg/L NP dose, respectively, concomitant with a 14% enhancement in the grain number per spike. Fe, Mn, and Ca content in grain increased to 77 ± 2.7 mg/kg, 119 ± 2.8 mg/kg, and 0.32 ± 7.9 g/kg in the 100 mg/L NPs, respectively. Compared to the ion treatment, the 100 mg/L NP treatments notably boosts wheat grain crude protein content (from 13 ± 0.79% to 15 ± 0.58%) and effectively lowers PA/Fe levels (from 11 ± 0.7 to 9.3 ± 0.5), thereby improving Fe bioavailability. The VSM results exhibited a slight superparamagnetic behavior, whereas the grains and stems exhibited diamagnetic behavior. The results indicate that the nanomaterial did not accumulate in the grains, suggesting its suitability as an Fe and Mn-rich fertilizer in agriculture. Above all, the foliar application of nanocomposites increased the concentrations of Fe, Mn, and Ca in wheat grains, accompanied by a significant enhancement in grain yield. Therefore, the research results indicate that the foliar application of MnFe2O4 NPs can positively regulate wheat grains' nutritional quality and yield.

2.
Nat Prod Res ; : 1-9, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623908

RESUMO

Two novel neolignans, piperkadsurenin A (1) and kadsurenin N (2), along with six known neolignans (3-8) and two lignans (9-10) were isolated from the stems of Piper kadsura (Choisy) Ohwi. Extensive spectroscopic data interpretation and ECD calculations were used to identify the structures of the new compounds 1 and 2. Especially, compound 1 represents the first example of neolignan with cyclopenta[b]pyran framework. The anti-inflammatory efficacy of compounds 1-10 in vitro was systematically assessed through NO production inhibitory assay. Compounds 3 and 7 significantly inhibited LPS-induced NO generation in RAW 264.7 cells, with IC50 values of 34.29 ± 0.82 and 47.5 ± 5.81 µM, respectively.

3.
J Mater Chem B ; 12(16): 3984-3995, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563496

RESUMO

The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.


Assuntos
Matriz Extracelular , Hidrogéis , Nanofibras , Nanofibras/química , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogéis/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Alicerces Teciduais/química , Masculino , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Proliferação de Células/efeitos dos fármacos
4.
Langmuir ; 40(16): 8654-8664, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588599

RESUMO

Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.

5.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
6.
J Hazard Mater ; 469: 134068, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521040

RESUMO

The abuse of olaquindox (OLA) as both an antimicrobial agent and a growth promoter poses significant threats to the environment and human health. While nanoreactors have proven effective in hazard detection, their widespread adoption has been hindered by tedious chemical processes and limited functionality. In this study, we introduce a novel green self-assembly strategy utilizing invertase, horseradish peroxidase, antibodies, and gold nanoclusters to form an aggregation-induced emission-type zeolitic imidazolate framework-8 nanoreactor. The results demonstrate that the lateral flow immunoassay not only allows for qualitative naked eye detection but also enables optical analysis through the fluorescence generated by aggregated gold nanoclusters and enzyme-catalyzed enhancement of visible colorimetric signals. To accommodate more detection scenarios, the photothermal effects and redox reactions of the nanoreactor can fulfill the requirements of thermal sensing and electrochemical analysis for smartphone applications. Remarkably, the proposed approach achieves a detection limit 17 times lower than conventional methods. Besides, the maximum linear range spans from 0.25 to 5 µg/L with high specificity, and the recovery is 85.2-112.9% in environmental water and swine urine. The application of this high-performance nanoreactor opens up avenues for the construction of multifunctional biosensors with great potential in monitoring hazardous materials.


Assuntos
Quinoxalinas , Smartphone , Zeolitas , Animais , Biônica , Ouro , Nanotecnologia , Suínos
7.
Aging (Albany NY) ; 16: 5336-5353, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466649

RESUMO

Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.


Assuntos
Colite Ulcerativa , Colite , MicroRNAs , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Antagomirs , Colite/induzido quimicamente , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Sirtuína 1/genética
8.
Cell Rep ; 43(4): 114002, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547126

RESUMO

The dysfunction of matriptase, a membrane-anchored protease, is highly related to the progression of skin and breast cancers. Epidermal growth factor (EGF)-induced matriptase activation and cancer invasion are known but with obscure mechanisms. Here, we demonstrate a vesicular-trafficking-mediated interplay between matriptase and EGF signaling in cancer promotion. We found that EGF induces matriptase to undergo endocytosis together with the EGF receptor, followed by acid-induced activation in endosomes. Activated matriptase is then secreted extracellularly on exosomes to catalyze hepatocyte growth factor precursor (pro-HGF) cleavage, resulting in autocrine HGF/c-Met signaling. Matriptase-induced HGF/c-Met signaling represents the second signal wave of EGF, which promotes cancer cell scattering, migration, and invasion. These findings demonstrate a role of vesicular trafficking in efficient activation and secretion of membrane matriptase and a reciprocal regulation of matriptase and EGF signaling in cancer promotion, providing insights into the physiological functions of vesicular trafficking and the molecular pathological mechanisms of skin and breast cancers.


Assuntos
Neoplasias da Mama , Invasividade Neoplásica , Serina Endopeptidases , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Endocitose , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Exossomos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Precursores de Proteínas , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina Endopeptidases/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo
9.
Risk Anal ; 44(1): 40-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37038093

RESUMO

The prevention and control of infectious disease epidemic (IDE) is an important task for every country and region. Risk assessment is significant for the prevention and control of IDE. Fuzzy Bayesian networks (FBN) can capture complex causality and uncertainty. The study developed a novel FBN model, integrating grounded theory, interpretive structural model, and expert weight determination algorithm for the risk assessment of IDE. The algorithm is proposed by the authors for expert weighting in fuzzy environment. The proposed FBN model comprehensively takes into account the risk factors and the interaction among them, and quantifies the uncertainty of IDE risk assessment, so as to make the assessment results more reliable. Taking the epidemic situation of COVID-19 in Wuhan as a case, the application of the proposed model is illustrated. And sensitivity analysis is performed to identify the important risk factors of IDE. Moreover, the effectiveness of the model is checked by the three-criterion-based quantitative validation method including variation connection, consistent effect, and cumulative limitation. Results show that the probability of the outbreak of COVID-19 in Wuhan is as high as 82.26%, which is well-matched with the actual situation. "Information transfer mechanism," "coordination and cooperation among various personnel," "population flow," and "ability of quarantine" are key risk factors. The constructed model meets the above three criteria. The application potential and effectiveness of the developed FBN model are demonstrated. The study provides decision support for preventing and controlling IDE.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Teorema de Bayes , Lógica Fuzzy , COVID-19/epidemiologia , Medição de Risco/métodos , Fatores de Risco
10.
Br J Cancer ; 130(3): 358-368, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097742

RESUMO

BACKGROUND: This study aimed to investigate the underlying mechanisms of matricellular protein periostin (POSTN) on tumour-stroma crosstalk in the liver metastatic microenvironment of colorectal cancer (CRC). METHODS: Postn-knockout mice and hepatic Postn-overexpressing mice were used to investigate the functions of POSTN on the formation of fibrotic microenvironment and the tumour-stroma crosstalk in the liver metastatic microenvironment of CRC. Clinical samples and database were analyzed to show the correlation between POSTN expression and fibrotic features and TGF-ß signalling in metastatic livers of CRC. RESULTS: POSTN deficiency reduced hepatic stellate cell (HSC) activation and liver metastasis, whereas POSTN overexpression in the liver significantly augmented the formation of a fibrotic microenvironment to support the liver metastatic growth of CRC cells in mice. Moreover, HSC-derived POSTN promoted TGF-ß1 expression in CRC cells through the integrin/FAK/ERK/STAT3 pathway; conversely, tumour cell-derived TGF-ß1 induced POSTN expression in HSCs via the Smad pathway. POSTN levels correlated with fibrotic features and TGF-ß signalling in metastatic liver tissues of CRC patients. CONCLUSIONS: POSTN and TGF-ß1 cooperatively contribute to the tumour-stroma crosstalk by forming a supporting fibrotic microenvironment to promote liver metastasis of CRC cells via the POSTN/integrin/FAK/ERK/STAT3/TGF-ß axis in tumour cells and TGF-ß/Smad/POSTN signalling in activated HSCs.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Integrinas/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Periostina , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-37916963

RESUMO

Emergence delirium (ED) is delirium that occurs during or immediately after emergence from general anesthesia or sedation. Effective pharmacological treatments for ED are lacking, so preventive measures should be taken to minimize the risk of ED. However, the risk factors for ED in adults are unclear. In this systematic review and meta-analysis, we evaluated the evidence for risk factors for ED in adults. The PubMed, Scopus, Cochrane Library, Google Scholar, and Embase databases were searched for observational studies reporting the risk factors for ED in adults from inception to July 31, 2023. Twenty observational studies reporting 19,171 participants were included in this meta-analysis. Among the preoperative factors identified as risk factors for ED were age <40 or ≥65 years, male sex, smoking history, substance abuse, cognitive impairment, anxiety, and American Society of Anesthesiologists physical status score III or IV. Intraoperative risk factors for ED were the use of benzodiazepines, inhalational anesthetics, or etomidate, and surgical factors including abdominal surgery, frontal craniotomy (vs. other craniotomy approaches) for cerebral tumors, and the length of surgery. Postoperative risk factors were indwelling urinary catheters, the presence of a tracheal tube in the postanesthetic care unit or intensive care unit, the presence of a nasogastric tube, and pain. Knowledge of these risk factors may guide the implementation of stratified management and timely interventions for patients at high risk of ED. The majority of studies included in this review investigated only hyperactive ED and further research is required to determine risk factors for hypoactive and mixed ED types.

13.
Anal Chem ; 95(46): 16830-16839, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37943818

RESUMO

Metabolite isomers play diverse and crucial roles in various metabolic processes. However, in untargeted metabolomics analysis, it remains a great challenge to distinguish between the constitutional isomers and enantiomers of amine-containing metabolites due to their similar chemical structures and physicochemical properties. In this work, the triplex stable isotope N-phosphoryl amino acids labeling (SIPAL) is developed to identify and relatively quantify the amine-containing metabolites and their isomers by using chiral phosphorus reagents coupled with high-resolution tandem mass spectroscopy. The constitutional isomers could be effectively distinguished with stereo isomers by using the diagnosis ions in MS/MS spectra. The in-house software MS-Isomerism has been parallelly developed for high-throughput screening and quantification. The proposed strategy enables the unbiased detection and relative quantification of isomers of amine-containing metabolites. Based on the characteristic triplet peaks with SIPAL tags, a total of 854 feature peaks with 154 isomer groups are successfully recognized as amine-containing metabolites in liver cells, in which 37 amine-containing metabolites, including amino acids, polyamines, and small peptides, are found to be significantly different between liver cancer cells and normal cells. Notably, it is the first time to identify S-acetyl-glutathione as an endogenous metabolite in liver cells. The SIPAL strategy could provide spectacular insight into the chemical structures and biological functions of the fascinating amine-containing metabolite isomers. The feasibility of SIPAL in isomeric metabolomics analysis may reach a deeper understanding of the mirror-chemistry in life and further advance the discovery of novel biomarkers for disease diagnosis.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Indicadores e Reagentes , Isomerismo , Cromatografia Líquida/métodos , Aminoácidos/química , Metabolômica/métodos , Poliaminas
14.
Environ Sci Pollut Res Int ; 30(55): 117179-117200, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864693

RESUMO

Carbon mitigation in the building sector is crucial for China to fulfill its commitments towards achieving a carbon peak and carbon neutrality. However, the impact of societal development and ecological indicators on building carbon emissions remains unclear. This study employs the panel smooth transition regression model to investigate the complex implications of societal development comprehensive indicators, characterized by harmonious development, decoupling, and technological advances, on buildings' total carbon emissions, based on the evidence from China's 30 provinces for the period between 2007 and 2020. Additionally, the robustness of the model confirms that the conclusion is still valid. The empirical results indicate a strongly non-linear relationship between societal development comprehensive indicators and building carbon emissions. Both the harmonious development and technological advances exhibit two transition functions, and decoupling features a single transition function. Harmonious development is more sensitive to the impact of building carbon emissions, while technological advances have tremendous emission reduction potential. From the time dimension, fluctuation trends and ranges are different. From the spatial dimension, the inhibiting and promoting effects on each province have regional heterogeneity. Our results entail suggestions for reduced building total carbon emissions and practical strategies for regional climate resilience and efficiency in mitigating climate change.


Assuntos
Carbono , Mudança Climática , China , Condições Sociais , Tecnologia , Dióxido de Carbono , Desenvolvimento Econômico
15.
Adv Healthc Mater ; 12(30): e2300997, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37713107

RESUMO

In soft tissue repair, fibrosis can lead to repair failure and long-term chronic pain in patients. Excessive mechanical stimulation of fibroblasts is one of the causes of fibrosis during abdominal wall regeneration. Inspired by the cobweb, a polycaprolactone beaded fiber is prepared by electrospinning. The cobweb-inspired structure attenuates the mechanical stimulation of cells under a dynamic environment. Nano-protrusions are introduced into the scaffold for further inhibition of fibrosis by self-induced crystallization. A machine is built for in vitro dynamic culture and rat abdominal subcutaneous embedding experiments are performed to verify the inhibiting effect of fibrosis in a dynamic environment in vivo. Results show that the expression of integrin ß1 and α-smooth muscle actin is inhibited by the cobweb-inspired structure under dynamic culture. The results of hematoxylin and eosin and Masson's trichrome indicate that the cobweb-inspired structure has a good inhibitory effect on fibrosis in a dynamic environment in vivo. In general, the cobweb-inspired scaffold with nano-protrusions has a good ability to inhibit fibrosis under both static and dynamic environments. It is believed that the scaffold has promising applications in the field of inhibiting fibrosis caused by mechanical stimulation.


Assuntos
Alicerces Teciduais , Humanos , Animais , Ratos , Alicerces Teciduais/química , Fibrose
16.
ACS Appl Mater Interfaces ; 15(30): 35999-36012, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477904

RESUMO

Due to the intrinsic weak immunogenicity of tumor cells and the quantitatively and functionally different populations of immune cells, immunosuppression has become the major obstacle for cancer immunotherapy. In this study, the biocompatible alginate was chemically modified with the carboxyethyl linker to facilitate the esterification reaction of the resultant carboxymethylated alginate (CMA) and resiquimod (R848), the agonist of Toll-like receptor 7/8 (TLR7/8a). In aqueous solution, the hydrophilic CMA and the hydrophobic R848 formed stable nanomicelles (CMA-R848) by self-assembling. After combined administration of CMA-R848 and cisplatin (Cis) in a gastric cancer (GC) model, the long-circulating CMA-R848 micelle reached the mild acidic tumor microenvironment (TME); the ester bonds were quickly cleaved by the ubiquitous esterase and released the single molecule of R848. In vitro and in vivo results demonstrated that the released R848 efficiently promoted co-stimulatory molecules' expression of dendritic cells (DCs), enhanced the antigen uptake and cross-presentation, and primed the cytotoxic T lymphocytes' (CTLs) infiltration and killing effects, thereby reprogramming the "cold tumor" into the "hot tumor". In addition, the ex vivo tumor sections revealed that the released R848 effectively repolarized the M2-like tumor-associated macrophages (TAMs) into M1-like macrophages, exerted synergistic antitumor activity, reduced the tumor burden, and prolonged the overall survival duration of the GC animal model. Our study provided a targeting therapeutic strategy overcoming the limitations of R848 in vivo, and enhanced the efficacy of GC chemotherapy and immunotherapy by TME modulation.


Assuntos
Micelas , Neoplasias Gástricas , Animais , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral , Imunoterapia/métodos , Imunossupressores
17.
New Phytol ; 240(1): 207-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37434324

RESUMO

Plant somatic embryogenesis (SE) is a multifactorial developmental process where embryos that can develop into whole plants are produced from somatic cells rather than through the fusion of gametes. The molecular regulation of plant SE, which involves the fate transition of somatic cells into embryogenic cells, is intriguing yet remains elusive. We deciphered the molecular mechanisms by which GhRCD1 interacts with GhMYC3 to regulate cell fate transitions during SE in cotton. While silencing of GhMYC3 had no discernible effect on SE, its overexpression accelerated callus formation, and proliferation. We identified two of GhMYC3 downstream SE regulators, GhMYB44 and GhLBD18. GhMYB44 overexpression was unconducive to callus growth but bolstered EC differentiation. However, GhLBD18 can be triggered by GhMYC3 but inhibited by GhMYB44, which positively regulates callus growth. On top of the regulatory cascade, GhRCD1 antagonistically interacts with GhMYC3 to inhibit the transcriptional function of GhMYC3 on GhMYB44 and GhLBD18, whereby a CRISPR-mediated rcd1 mutation expedites cell fate transition, resembling the effects of GhMYC3 overexpression. Furthermore, we showed that reactive oxygen species (ROS) are involved in SE regulation. Our findings elucidated that SE homeostasis is maintained by the tetrapartite module, GhRCD1-GhMYC3-GhMYB44-GhLBD18, which acts to modulate intracellular ROS in a temporal manner.


Assuntos
Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio , Diferenciação Celular
18.
Front Pharmacol ; 14: 1174415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435493

RESUMO

Diabetic nephropathy (DN), a prevalent microvascular complication of diabetes mellitus, is the primary contributor to end-stage renal disease in developed countries. Existing clinical interventions for DN encompass lifestyle modifications, blood glucose regulation, blood pressure reduction, lipid management, and avoidance of nephrotoxic medications. Despite these measures, a significant number of patients progress to end-stage renal disease, underscoring the need for additional therapeutic strategies. The endoplasmic reticulum (ER) stress response, a cellular defense mechanism in eukaryotic cells, has been implicated in DN pathogenesis. Moderate ER stress can enhance cell survival, whereas severe or prolonged ER stress may trigger apoptosis. As such, the role of ER stress in DN presents a potential avenue for therapeutic modulation. Chinese herbal medicine, a staple in Chinese healthcare, has emerged as a promising intervention for DN. Existing research suggests that some herbal remedies may confer renoprotective benefits through the modulation of ER stress. This review explores the involvement of ER stress in the pathogenesis of DN and the advancements in Chinese herbal medicine for ER stress regulation, aiming to inspire new clinical strategies for the prevention and management of DN.

19.
J Agric Food Chem ; 71(27): 10349-10360, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392181

RESUMO

Piper longum L. is widely cultivated for food, medicine, and other purposes in tropical and subtropical regions. Sixteen compounds including nine new amide alkaloids were isolated from the roots of P. longum. The structures of these compounds were determined by spectroscopic data. All compounds showed better anti-inflammatory activities (IC50 = 1.90 ± 0.68-40.22 ± 0.45 µM) compared to indomethacin (IC50 = 52.88 ± 3.56 µM). Among the isolated compounds, five dimeric amide alkaloids exhibited synergistic effects with three chemotherapeutic drugs (paclitaxel, adriamycin, or vincristine) against cervical cancer cells. Moreover, these dimeric amide alkaloids also enhanced the efficacy of paclitaxel in paclitaxel-resistant cervical cancer cells. The combination treatment of one of these dimeric amide alkaloids and paclitaxel promoted cancer cell apoptosis, which is related to the Src/ERK/STAT3 signaling pathway.


Assuntos
Alcaloides , Piper , Neoplasias do Colo do Útero , Feminino , Humanos , Piper/química , Neoplasias do Colo do Útero/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Paclitaxel/farmacologia , Amidas/química , Anti-Inflamatórios/farmacologia
20.
Anal Chim Acta ; 1273: 341559, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423656

RESUMO

The measurement of DNA methyltransferase (MTase) activity and screening of DNA MTase inhibitors holds significant importance for the diagnosis and therapy of methylation-related illness. Herein, we developed a colorimetric biosensor (PER-FHGD nanodevice) to detect DNA MTase activity by integrating the primer exchange reaction (PER) amplification and functionalized hemin/G-quadruplex DNAzyme (FHGD). By replacing the native hemin cofactor into the functionalized cofactor mimics, FHGD has exhibited significantly improved catalytic efficiency, thereby enhancing the detection performance of the FHGD-based system. The proposed PER-FHGD system is capable of detecting Dam MTase with excellent sensitivity, exhibiting a limit of detection (LOD) as low as 0.3 U/mL. Additionally, this assay demonstrates remarkable selectivity and ability for Dam MTase inhibitors screening. Furthermore, using this assay, we successfully detect the Dam MTase activity both in serum and in E. coli cell extracts. Importantly, this system has the potential to serve as a universal strategy for FHGD-based diagnosis in point-of-care (POC) tests, by simply altering the recognition sequence of the substrate for other analytes.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA Catalítico/metabolismo , Hemina , Colorimetria , Escherichia coli/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA