Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Food Chem ; 460(Pt 3): 140761, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137575

RESUMO

This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.

2.
Int J Biol Macromol ; 276(Pt 1): 133833, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013513

RESUMO

Pasteurization is an effective sterilization technique for the treatment of liquid egg white (LEW), but the pasteurization temperature is generally limited because increased temperature can lead to aggregation of the proteins and affect their processing properties. In this study, phosphorylation modification was used to increase the thermal stability and pasteurization temperature of LEW, aiming to enhance the pasteurization sterilizing effect. The FT-IR results showed that the phosphate groups were successfully grafted into protein molecules, improving the order degree of protein molecules. In this case, the pasteurization temperature of LEW increased from 58 °C to 61 °C, without accompanying thermal aggregation. The molecular structural results suggested that the enhanced thermal stability was attributed to the decreased average particle size and the increased electrostatic repulsion between protein molecules, which largely reduced the turbidity of LEW during pasteurization treatment. Meanwhile, this process was dominated by noncovalent interactions (hydrophobic interactions and hydrogen bonding). Furthermore, the phosphorylation modification can synchronously improve emulsifying and foaming properties of LEW. Therefore, this work suggested that phosphorylation has great potential to improve thermal stability and pasteurization temperature of LEW, which can be utilized to extend its sterilizing effect and shelf life.

3.
Int J Biol Macromol ; 276(Pt 1): 133794, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992530

RESUMO

Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1ß, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-ß) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.

4.
Food Funct ; 15(15): 7865-7882, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38967039

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-ß (Aß) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Clostridium , Disfunção Cognitiva , Modelos Animais de Doenças , Microbioma Gastrointestinal , Indóis , Camundongos Transgênicos , Simbióticos , Xilanos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Camundongos , Simbióticos/administração & dosagem , Indóis/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Xilanos/metabolismo , Xilanos/farmacologia , Clostridium/metabolismo , Masculino , Peptídeos beta-Amiloides/metabolismo , Humanos , Propionatos/metabolismo , Eixo Encéfalo-Intestino/fisiologia
5.
J Agric Food Chem ; 72(32): 17989-18002, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082086

RESUMO

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Lactobacillus plantarum , Neurônios , Probióticos , Triptofano , Triptofano/metabolismo , Animais , Probióticos/administração & dosagem , Humanos , Camundongos , Neurônios/metabolismo , Masculino , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/dietoterapia , Síndrome do Intestino Irritável/terapia , Lactobacillus plantarum/metabolismo , Camundongos Endogâmicos C57BL , Intestinos/microbiologia
6.
Food Chem ; 457: 140124, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908239

RESUMO

Phenolics in bound form extensively exist in cereal dietary fiber, especially insoluble fiber, while their release profile in gastrointestinal tract and contribution to the potential positive effects of dietary fiber in modulating gut microbiota still needs to be disclosed. In this work, the composition of bound phenolics (BPs) in triticale insoluble dietary fiber (TIDF) was studied, and in vitro gastrointestinal digestion as well as colonic fermentation were performed to investigate BPs liberation and their role in regulating intestinal flora of TIDF. It turned out that most BPs were unaccessible in digestion but partly released continuously during fermentation. 16 s rRNA sequencing demonstrated that TIDF possessed prebiotic effects by promoting anti-inflammatory while inhibiting proinflammatory bacteria alongside boosting SCFAs production and antioxidative BPs contributed a lot to these effects. Results indicated that TIDF held capabilities to regulate intestinal flora and BPs were important functional components to the health benefits of cereal dietary fiber.


Assuntos
Bactérias , Colo , Fibras na Dieta , Digestão , Fermentação , Microbioma Gastrointestinal , Fenóis , Prebióticos , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Fibras na Dieta/análise , Prebióticos/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fenóis/metabolismo , Fenóis/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Colo/metabolismo , Colo/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Grão Comestível/química , Grão Comestível/metabolismo
7.
Clin Nutr ESPEN ; 61: 131-139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777424

RESUMO

BACKGROUND: Insulin resistance (IR) elevates cardiovascular disease (CVD) and mortality risks. Insulin resistance (IR) increases the risk of CVDs and mortality. Recently, the American Heart Association introduced the Life's Essential 8 (LE8) framework to assess cardiovascular health (CVH). However, its impact on mortality in IR populations is unknown. METHODS: Analyzing 2005-2018 National Health and Nutrition Examination Survey data, we studied 5301 IR adults (≥20 years). LE8 scores were calculated and participants were categorized into low, moderate, and high CVH groups. Systemic immune-inflammation index (SII) and heart age/vascular age (HVA) were measured as potential mediators. Cox models estimated all-cause and CVD mortality hazard ratios (HRs), stratified by LE8 score and sex, and adjusted for covariates. Mediation analyses assessed SII and HVA's indirect effects. This study is an observational cohort study. RESULTS: Over a 7.5-year median follow-up, 625 deaths occurred, including 159 CVD-related. Compared to low CVH, moderate and high CVH groups showed reduced all-cause (HR = 0.72, 95% CI 0.58-0.89; HR = 0.38, 95% CI 0.22-0.67) and CVD mortality (HR = 0.42, 95% CI 0.26-0.69; HR = 0.15, 95% CI 0.04-0.57). A 10-point LE8 increase correlated with 15% and 31% reductions in all-cause and CVD mortality, respectively. SII and HVA mediated up to 38% and 12% of these effects. The LE8's protective effect was more pronounced in men. CONCLUSION: LE8 effectively evaluates CVH and lowers mortality risk in IR adults, partially mediated by SII and HVA. The findings inform clinical practice and public health strategies for CVD prevention in IR populations.


Assuntos
Doenças Cardiovasculares , Inflamação , Resistência à Insulina , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/mortalidade , Adulto , Fatores Sexuais , Inquéritos Nutricionais , Envelhecimento , Idoso , Fatores de Risco , Estudos de Coortes
8.
Int J Biol Macromol ; 272(Pt 2): 132583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795882

RESUMO

The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Biopolímeros/química , Engenharia Tecidual/métodos , Humanos , Fenômenos Mecânicos , Nanocompostos/química , Materiais Biocompatíveis/química , Animais , Impressão Tridimensional , Bioimpressão/métodos
9.
Mol Nutr Food Res ; 68(11): e2400090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757671

RESUMO

SCOPE: Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous. This study aims to investigate the impact of RK on lipopolysaccharide (LPS)-induced depressed mice and elucidates its potential mechanisms, focusing on the gut-brain axis. METHODS AND RESULTS: Through behavioral tests, RK exerts a notable preventive effect on LPS-induced depression-like behaviors in mice. RK proves capable of attenuating gut inflammation, repairing gut barrier impairment, modulating the composition of the gut microbiome (Muribaculaceae, Streptococcus, Lachnospiraceae, and Akkermansia), and promoting the production of short-chain fatty acids. Furthermore, RK alleviates neuroinflammation by suppressing the TLR-4/NF-κB pathway and bolsters synaptic function by elevating levels of neurotrophic factors and synapse-associated proteins. CONCLUSION: The current study provides compelling evidence that RK effectively inhibits the TLR-4/NF-κB pathway via the gut-brain axis, leading to the improvement of LPS-induced depression-like behaviors in mice. This study addresses the research gap in understanding the antidepressant effects of RK and illuminates the potential of utilizing RK as a functional food for preventing depression.


Assuntos
Eixo Encéfalo-Intestino , Depressão , Microbioma Gastrointestinal , Lipopolissacarídeos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Depressão/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Butanonas/farmacologia , Camundongos Endogâmicos C57BL , Comportamento Animal/efeitos dos fármacos , Antidepressivos/farmacologia
10.
Ann Med Surg (Lond) ; 86(5): 2848-2855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694287

RESUMO

Vascular calcification is an important hallmark of atherosclerosis. Coronary artery calcification (CAC) implies the presence of coronary artery disease (CAD), irrespective of risk factors or symptoms, is concomitant with the development of advanced atherosclerosis. Coronary thrombosis is the most common clinical end event leading to acute coronary syndrome (ACS). The least common type of pathology associated with thrombosis is the calcified nodule (CN). It usually occurs in elderly patients with severely calcified and tortuous arteries. The prevalence of calcified nodules in patients with ACS may be underestimated due to the lack of easily recognisable diagnostic methods. In this review, the authors will focus on the classification, clinical significance, pathogenesis, and diagnostic evaluation and treatment of CAC to further explore the clinical significance of CN.

11.
Int J Biol Macromol ; 270(Pt 2): 132313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740156

RESUMO

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.


Assuntos
Alginatos , Emulsões , Proteínas de Ervilha , Riboflavina , beta Caroteno , beta Caroteno/química , Alginatos/química , Riboflavina/química , Emulsões/química , Proteínas de Ervilha/química , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Estabilidade de Medicamentos , Cápsulas
12.
Aging (Albany NY) ; 16(9): 8070-8085, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38728249

RESUMO

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.


Assuntos
Senescência Celular , Células Endoteliais , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Lipoproteínas LDL , Mitocôndrias , Espécies Reativas de Oxigênio , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Fator 4 Semelhante a Kruppel/metabolismo , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Humanos , Células Endoteliais/metabolismo , Citocinas/metabolismo , Fenótipo , Camundongos Knockout , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Transdução de Sinais
13.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38597567

RESUMO

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Assuntos
Encapsulamento de Células , Probióticos , Humanos , Trato Gastrointestinal , Biofilmes
14.
Quant Imaging Med Surg ; 14(4): 2904-2915, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617179

RESUMO

Background: The effects of glycemic status on coronary physiology have not been well evaluated. This study aimed to investigate changes in coronary physiology by using angiographic quantitative flow ratio (QFR), and their relationships with diabetes mellitus (DM) and glycemic control status. Methods: This retrospective cohort study included 530 patients who underwent serial coronary angiography (CAG) measurements between January 2016 and December 2021 at Tongji Hospital of Tongji University. Based on baseline and follow-up angiograms, 3-vessel QFR (3V-QFR) measurements were performed. Functional progression of coronary artery disease (CAD) was defined as a change in 3V-QFR (Δ3V-QFR = 3V-QFRfollow-up - 3V-QFRbaseline) ≤-0.05. Univariable and multivariable logistic regression analyses were applied to identify the independent predictors of coronary functional progression. Subgroup analysis according to diabetic status was performed. Results: During a median interval of 12.1 (10.6, 14.3) months between the two QFR measurements, functional progression was observed in 169 (31.9%) patients. Follow-up glycosylated hemoglobin (HbA1c) was predictive of coronary functional progression with an area under the curve (AUC) of 0.599 [95% confidence interval (CI): 0.546-0.651; P<0.001] in the entire population. Additionally, the Δ3V-QFR values were significantly lower in diabetic patients with HbA1c ≥7.0% compared to those with well-controlled HbA1c or non-diabetic patients [-0.03 (-0.09, 0) vs. -0.02 (-0.05, 0.01) vs. -0.02 (-0.05, 0.02); P=0.002]. In a fully adjusted multivariable logistics analysis, higher follow-up HbA1c levels were independently associated with progression in 3V-QFR [odds ratio (OR), 1.263; 95% CI: 1.078-1.479; P=0.004]. Furthermore, this association was particularly strong in diabetic patients (OR, 1.353; 95% CI: 1.082-1.693; P=0.008) compared to patients without DM. Conclusions: Among patients with established CAD, on-treatment HbA1c levels were independently associated with progression in physiological atherosclerotic burden, especially in patients with DM.

15.
Food Res Int ; 185: 114277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658069

RESUMO

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Assuntos
Emulsões , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Mentha piperita , Óleos de Plantas , Mentha piperita/química , Emulsões/química , Humanos , Óleos de Plantas/química , Aromatizantes/química , Gelatina/química , Reagentes de Ligações Cruzadas/química , Paladar , Hidrogéis/química , Nariz Eletrônico , Masculino , Feminino , Adulto
16.
J Nutr Health Aging ; 28(5): 100203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460315

RESUMO

OBJECTIVES: Hypertension, a key contributor to mortality, is impacted by biological aging. We investigated the relationship between novel biological aging metrics - Phenotypic Age (PA) and Phenotypic Age Acceleration (PAA) - and mortality in individuals with hypertension, exploring the mediating effects of arterial stiffness (estimated Pulse Wave Velocity, ePWV), and Heart/Vascular Age (HVA). METHODS: Using data from 62,160 National Health and Nutrition Examination Survey (NHANES) participants (1999-2010), we selected 4,228 individuals with hypertension and computed PA, PAA, HVA, and ePWV. Weighted, multivariable Cox regression analysis yielded Hazard Ratios (HRs) relating PA, PAA to mortality, and mediation roles of ePWV, PAA, HVA were evaluated. Mendelian randomization (MR) analysis was employed to investigate causality between genetically inferred PAA and hypertension. RESULTS: Over a 12-year median follow-up, PA and PAA were tied to increased mortality risks in individuals with hypertension. All-cause mortality hazard ratios per 10-year PA and PAA increments were 1.96 (95% CI, 1.81-2.11) and 1.67 (95% CI, 1.52-1.85), respectively. Cardiovascular mortality HRs were 2.32 (95% CI, 1.97-2.73) and 1.93 (95% CI, 1.65-2.26) for PA and PAA, respectively. ePWV, PAA, and HVA mediated 42%, 30.3%, and 6.9% of PA's impact on mortality, respectively. Mendelian randomization highlighted a causal link between PAA genetics and hypertension (OR = 1.002; 95% CI, 1.000-1.003). CONCLUSION: PA and PAA, enhancing cardiovascular risk scores by integrating diverse biomarkers, offer vital insights for aging and mortality evaluation in individuals with hypertension, suggesting avenues for intensified aging mitigation and cardiovascular issue prevention. Validations in varied populations and explorations of underlying mechanisms are warranted.


Assuntos
Envelhecimento , Hipertensão , Análise da Randomização Mendeliana , Inquéritos Nutricionais , Fenótipo , Análise de Onda de Pulso , Humanos , Hipertensão/mortalidade , Masculino , Feminino , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Idoso , Rigidez Vascular , Fatores de Risco , Modelos de Riscos Proporcionais , Adulto , Mortalidade
17.
Food Funct ; 15(7): 3395-3410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38465655

RESUMO

Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.


Assuntos
Transtorno Autístico , Ácido Tióctico , Camundongos , Animais , Ácido Tióctico/farmacologia , Transtorno Autístico/induzido quimicamente , Eixo Encéfalo-Intestino , Acrilamida/toxicidade , Dieta
18.
J Agric Food Chem ; 72(12): 6276-6288, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485738

RESUMO

Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1ß, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Succinatos , Animais , Camundongos , Intestinos , Ácidos Cafeicos , Polifenóis , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
19.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520117

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.

20.
Appl Radiat Isot ; 208: 111297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513476

RESUMO

Proton therapy has emerged as an advantageous modality for tumor radiotherapy due to its favorable physical and biological properties. However, this therapy generates induced radioactivity through nuclear reactions between the primary beam, secondary particles, and surrounding materials. This study focuses on systematically investigating the induced radioactivity in the gantry room during pencil beam scanning, utilizing both experimental measurements and Monte Carlo simulations. Results indicate that patients are the primary source of induced radioactivity, predominantly producing radionuclides such as 11C, 13N, and 15O. Long-term irradiation primarily generates radionuclides like 22Na, 24Na, and 54Mn etc. Additionally, this study estimates the individual doses received by medical workers in the gantry room, the irradiation dose for patient escorts, and the additional dose to patients from residual radiation. Finally, the study offers recommendations to minimize unnecessary irradiation doses to medical workers, patient escorts, and patients.


Assuntos
Terapia com Prótons , Radioatividade , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Radioisótopos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA