Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
2.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462771

RESUMO

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Peroxidação de Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico
3.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
4.
Virol J ; 21(1): 46, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395970

RESUMO

BACKGROUND: Azvudine has been approved for the treatment of coronavirus disease 2019 (COVID-19) patients in China, and this meta-analysis aims to illustrate the safety of azvudine and its effectiveness in reducing mortality. METHODS: PubMed, Embase, Web of science, Cochrane Library and the Epistemonikos COVID-19 Living Overview of Evidence database (L.OVE) were searched to aggregate currently published studies. Cochrane risk of bias tool and ROBINS-I tool were used to assess the risk of bias of randomized controlled study and cohort study respectively. Odds radios (ORs) with 95% confidence interval (CIs) were combined for dichotomous variables. Publication bias was assessed by Egger's test and funnel plots. RESULTS: A total of 184 articles were retrieved from the included databases and 17 studies were included into the final analysis. Pooled analysis showed that azvudine significantly reduced mortality risk in COVID-19 patients compared with controls (OR: 0.41, 95%CI 0.31-0.54, p < 0.001). Besides, either mild to moderate or severe COVID-19 patients could benefit from azvudine administration. There was no significant difference in the incidence of ICU admission (OR: 0.90, 95%CI 0.47-1.72, p = 0.74) and invasive ventilation (OR: 0.94, 95%CI 0.54-1.62, p = 0.82) between azvudine and control group. The incidence of adverse events was similar between azvudine and control (OR: 1.26, 95%CI 0.59-2.70, p = 0.56). CONCLUSIONS: This meta-analysis suggests that azvudine could reduce the mortality risk of COVID-19 patients, and the safety of administration is acceptable. TRIAL REGISTRATION: PROSPERO; No.: CRD42023462988; URL: https://www.crd.york.ac.uk/prospero/ .


Assuntos
Azidas , COVID-19 , Desoxicitidina/análogos & derivados , Humanos , Estudos de Coortes , China , Bases de Dados Factuais
5.
J Transl Med ; 22(1): 133, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310229

RESUMO

BACKGROUND: Oxaliplatin resistance usually leads to therapeutic failure and poor prognosis in colorectal cancer (CRC), while the underlying mechanisms are not yet fully understood. Metabolic reprogramming is strongly linked to drug resistance, however, the role and mechanism of metabolic reprogramming in oxaliplatin resistance remain unclear. Here, we aim to explore the functions and mechanisms of purine metabolism on the oxaliplatin-induced apoptosis of CRC. METHODS: An oxaliplatin-resistant CRC cell line was generated, and untargeted metabolomics analysis was conducted. The inosine 5'-monophosphate dehydrogenase type II (IMPDH2) expression in CRC cell lines was determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The effects of IMPDH2 overexpression, knockdown and pharmacological inhibition on oxaliplatin resistance in CRC were assessed by flow cytometry analysis of cell apoptosis in vivo and in vitro. RESULTS: Metabolic analysis revealed that the levels of purine metabolites, especially guanosine monophosphate (GMP), were markedly elevated in oxaliplatin-resistant CRC cells. The accumulation of purine metabolites mainly arose from the upregulation of IMPDH2 expression. Gene set enrichment analysis (GSEA) indicated high IMPDH2 expression in CRC correlates with PURINE_METABOLISM and MULTIPLE-DRUG-RESISTANCE pathways. CRC cells with higher IMPDH2 expression were more resistant to oxaliplatin-induced apoptosis. Overexpression of IMPDH2 in CRC cells resulted in reduced cell death upon treatment with oxaliplatin, whereas knockdown of IMPDH2 led to increased sensitivity to oxaliplatin through influencing the activation of the Caspase 7/8/9 and PARP1 proteins on cell apoptosis. Targeted inhibition of IMPDH2 by mycophenolic acid (MPA) or mycophenolate mofetil (MMF) enhanced cell apoptosis in vitro and decreased in vivo tumour burden when combined with oxaliplatin treatment. Mechanistically, the Wnt/ß-catenin signalling was hyperactivated in oxaliplatin-resistant CRC cells, and a reciprocal positive regulatory mechanism existed between Wnt/ß-catenin and IMPDH2. Blocking the Wnt/ß-catenin pathway could resensitize resistant cells to oxaliplatin, which could be restored by the addition of GMP. CONCLUSIONS: IMPDH2 is a predictive biomarker and therapeutic target for oxaliplatin resistance in CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Apoptose , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Oxirredutases/genética , Oxirredutases/metabolismo , Via de Sinalização Wnt
6.
N Biotechnol ; 80: 12-20, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176452

RESUMO

Although several technologies have been developed to isolate cells of interest from a heterogenous sample, clogging and impaired cell viability limit such isolation. We have developed the Enrich TROVO system as a novel, nonfluidic technology to sort live cells. The TROVO system combines imaging-based cell selection and photo-crosslinking of (gelatin methacrylate) gelMA-hydrogel to capture cells. After capture, cells are released by enzymatic digestion of the hydrogel and then retrieved for downstream analysis or further cell culturing. The system can capture cells with a recovery rate of 48% while maintaining 90% viability. Moreover, TROVO can enrich rare cells 506-fold with 93% efficiency using single step isolation from a 1:104 cell mixture, and can also capture one target cell from 1 million cells, reaching an enrichment ratio of 9128. In addition, 100% purity and 49% recovery rate can be achieved by a following negative isolation process. Compared to existing technologies, the TROVO system is clog-resistant, highly biocompatible, and can process a wide range of sample sizes.


Assuntos
Gelatina , Hidrogéis , Separação Celular , Metacrilatos , Engenharia Tecidual
7.
Trials ; 25(1): 77, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254211

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 will coexist with humans for a long time, and it is therefore important to develop effective treatments for coronavirus disease 2019 (COVID-19). Recent studies have demonstrated that antiviral therapy is a key factor in preventing patients from progressing to severe disease, even death. Effective and affordable antiviral medications are essential for disease treatment and are urgently needed. Azvudine, a nucleoside analogue, is a potential low-cost candidate with few drug interactions. However, validation of high-quality clinical studies is still limited. METHODS: This is a multicentre, randomized, double-blind, placebo-controlled phase III clinical trial involving 1096 adult patients with mild-to-moderate symptoms of COVID-19 who are at high risk for progression to severe COVID-19. Patients will be randomized to (1) receive azvudine tablets 5 mg daily for a maximum of 7 days or (2) receive placebo five tablets daily. All participants will be permitted to use a standard treatment strategy except antiviral therapy beyond the investigational medications. The primary outcome will be the ratio of COVID-19-related critical illness and all-cause mortality among the two groups within 28 days. DISCUSSION: The purpose of this clinical trial is to determine whether azvudine can prevent patients at risk of severe disease from progressing to critical illness and death, and the results will identify whether azvudine is an effective and affordable antiviral treatment option for COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT05689034. Registered on 18 January 2023.


Assuntos
Azidas , COVID-19 , Desoxicitidina/análogos & derivados , Adulto , Humanos , Estado Terminal , SARS-CoV-2 , Antivirais/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
8.
Aging (Albany NY) ; 15(23): 14192-14209, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38085644

RESUMO

INTRODUCTION: Whether dexmedetomidine (DEX), an anesthetic adjuvant, can improve renal transplant outcomes is not clear. METHODS: We systematically identified clinical trials in which DEX was administered in renal transplantation (RT). On November 1, 2022, we searched The Cochrane Library, MEDLINE, EMBASE and https://www. CLINICALTRIALS: gov/. The main outcomes were delayed graft function and acute rejection. RESULTS: A total of seven studies were included in the meta-analysis. The results showed that compared with the control, DEX significantly reduced the occurrence of delayed graft function (RR 0.76; 95% CI 0.60-0.98), short-term serum creatinine [postoperative day (POD) 2: (MD -22.82; 95% CI -42.01 - -3.64)] and blood urea nitrogen [POD 2: (MD -2.90; 95% CI -5.10 - -0.70); POD 3: (MD 2.07; 95% CI -4.12 - -0.02)] levels, postoperative morphine consumption (MD -4.27; 95% CI -5.92 - -2.61) and the length of hospital stay (MD -0.85; 95% CI-1.47 - -0.23). However, DEX did not reduce the risk of postoperative acute rejection (RR 0.75; 95% CI 0.45-1.23). The results of the subgroup analysis showed that country type, donor type, and average age had a certain impact on the role of DEX. CONCLUSIONS: DEX may improve the short-term clinical outcome of RT and shorten the length of hospital stay of patients.


Assuntos
Dexmedetomidina , Transplante de Rim , Humanos , Dexmedetomidina/uso terapêutico , Função Retardada do Enxerto/tratamento farmacológico
9.
Autophagy ; : 1-26, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050963

RESUMO

Circular RNAs (circRNAs) are special non-coding RNA (ncRNA) molecules that play a significant role in many diseases. However, the biogenesis and regulation of circRNAs in diabetic nephropathy (DN) are largely unknown. Here, we investigated the expression profile of circRNAs in kidney of DN mice through circular RNA sequencing (circRNA-seq). The renal biopsy samples of patients with DN had low circ -0,000,953 expression, which was significantly associated with renal function. Furthermore, loss-of-function and gain-of-function experiments were carried out to prove the role of circ -0,000,953 in DN. Podocyte conditional knockin (cKI) or systemic overexpression of circ -0,000,953 alleviated albuminuria and restored macroautophagy/autophagy in kidney of diabetic mice. However, circ -0,000,953 knockdown exacerbated albuminuria and podocyte injury. Mechanistically, we found circ -0,000,953 directly binds to Mir665-3p-Atg4b to perform its function. Silencing of Mir665-3p or overexpression of Atg4b recovered podocyte autophagy both in vitro and in vivo. To examine the cause of circ -0,000,953 downregulation in DN, bioinformatics prediction found that circ -0,000,953 sequence has a high possibility of containing an m6A methylation site. Additionally, METTL3 was proved to regulate the expression and methylation level of circ -0,000,953 through YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). In conclusion, this study revealed that circ -0,000,953 regulates podocyte autophagy by targeting Mir665-3p-Atg4b in DN. Therefore, circ -0,000,953 is a potential biomarker for prevention and cure of DN.Abbreviation: CCL2/MCP-1: C-C motif chemokine ligand 2; ceRNA: competing endogenous RNA; circRNA: circular RNA; cKI: conditional knockin; cKO: conditional knockout; CRE: creatinine; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; HG: high glucose; IF: immunofluorescence; MAP1LC3/LC3B: microtubule-associated protein 1 light chain 3 beta; MPC5: mouse podocyte clone 5; MTECs: mouse tubular epithelial cells; MTOR: mechanistic target of rapamycin kinase; NC: normal control; ncRNA: non-coding RNA; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PAS: periodic acid-Schiff; RELA/p65: v-rel reticuloendotheliosis viral oncogene homolog A (avian); SDs: slit diaphragm proteins; Seq: sequencing; STZ: streptozotocin; SV40: SV40-MES13-cells, mouse mesangial cell line; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; TEM: transmission electron microscopy; TNF/TNF-α: tumor necrosis factor; VECs: vascular endothelial cells; WT1: WT1 transcription factor; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.

10.
Heliyon ; 9(11): e21231, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027630

RESUMO

Cisplatin is a chemotherapeutant widely used in treating solid tumors, with the common side effect of acute kidney injury (AKI). Developing effective useful agent for preventing or treating cisplatin-induced AKI is of great importance. In this study, we investigate the protective effect of vaccarin, a chemical entity of flavonoid glycoside, against cisplatin-induced AKI. Cisplatin-treated C57BL/6J mice and human kidney-2 (HK-2) cells were used as the model of cisplatin-induced AKI. The levels of blood urea nitrogen (BUN) and creatine (Cr) levels and periodic acid-Schiff staining (PAS) scores decreased when vaccarin was administrated. Vaccarin had no impact on renal platinum accumulation, which was detected by the ICP-MS 6 h after cisplatin injection. Moreover, vaccarin can significantly alleviate the product of reactive oxygen species and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) in cisplatin-induced AKI, both in vivo and in vitro. In addition, vaccarin decreased the receptor-interacting protein kinase 1 (RIPK1) related programmed necrosis (necroptosis), cell apoptosis (shown by the protein levels of cleaved-caspase3 and flow cytometry) and inflammation (shown by the decreased levels of NLRP3, p-P65 and the mRNA of several inflammatory factors). NOX4 inhibitor GLX351322 (GLX) and NOX4 kowndown by siRNA have equivalent protective effect of vaccarin in vitro. When vaccarin was administered together with GLX or NOX4 siRNA, this protective effect of vaccarin did not further increase, as indicating by the index of oxidative stress, cell viability, necroptosis and apoptosis. In conclusion, vaccarin can alleviate cisplatin-induced AKI via inhibiting NOX4.

11.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790849

RESUMO

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteína da Zônula de Oclusão-1 , Autofagia/genética , Carcinoma de Células Renais/genética , Proliferação de Células/genética , Neoplasias Renais/genética , Rim , Prognóstico
12.
Biomed Pharmacother ; 167: 115563, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742605

RESUMO

Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.

13.
Int Immunopharmacol ; 124(Pt A): 110850, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633236

RESUMO

Increasing evidence and our preliminary work have revealed the significant role of ferroptosis in acute kidney injury (AKI) induced by ischemia/reperfusion (IR). Carnosine (Car), a dipeptide consisting of ß-alanine and L-histidine, has been shown to ameliorate HG-induced tubular epithelial cells inflammation. Whether Car exerts protective effects on AKI, and its molecular mechanism have not been clarified. Our in vivo and in vitro IR-AKI mouse models demonstrated that Car alleviates kidney injury, inflammation and ferroptosis. In hypoxia/reoxygenation (HR) induced human renal tubular epithelial cells (HK2), Car treatment reduced lipid peroxidation and iron accumulation, suppressed oxidative stress, and inhibited ferroptosis. Through cellular thermal shift assay (CETSA) and molecular docking, we identified GPX4 as a potential target that binds with Car. Further study showed that overexpressed GPX4 had a comparable protective effect on HK2 cells under HR conditions, similar to Car. Additionally, our findings demonstrated that Car exhibited similar anti-ferroptosis effects in both folic acid (FA)-induced AKI mouse models and Erastin induced HK2 cells. In conclusion, our results highlight that Car alleviate renal IR injury by inhibiting GPX4-mediated ferroptosis. Car shows promise as a potential therapeutic drug for IR-AKI and other diseases associated with ferroptosis.

14.
Mol Ther ; 31(10): 3084-3103, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37533255

RESUMO

Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.

15.
Biotechniques ; 75(2): 56-64, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37551835

RESUMO

Enriching target cell clones from diverse cell populations is vital for many life science applications. We have developed a novel method to rapidly and efficiently purify specific clonal cell populations from a larger, heterogeneous group using the Enrich TroVo system (Enrich Biosystems Inc., CT, USA). This system takes advantage of microfabrication and optical technologies by utilizing small hydrogel wells to separate desired cell populations and an innovative patching technique to selectively eliminate undesired cells. This method allows the isolation and growth of desired cells with minimal impact on their viability and proliferation. We successfully isolated and expanded clonal cell populations of desired cells using two model cells. Compared with fluorescence-activated cell sorting, Enrich TroVo system offers a promising alternative for isolating of sensitive, adherent cells, that is, patient-derived cells.


Assuntos
Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , Separação Celular/métodos
16.
Toxicol Ind Health ; 39(11): 630-637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37644888

RESUMO

Smoking or occupational exposure leads to low concentrations of acrolein on the surface of the airways. Acrolein is involved in the pathophysiological processes of various respiratory diseases. Reports showed that acrolein induced an increase in mitochondrial reactive oxygen species (mROS). Furthermore, exogenous H2O2 was found to increase intracellular Zn2⁺ concentration ([Zn2⁺]ᵢ). However, the specific impact of acrolein on changes in intracellular Zn2⁺ levels has not been fully investigated. Therefore, this study aimed to investigate the effects of acrolein on mROS and [Zn2⁺]ᵢ in A549 cells. We used Mito Tracker Red CM-H2Xros (MitoROS) and Fluozin-3 fluorescent probes to observe changes in mROS and intracellular Zn2⁺. The results revealed that acrolein increased [Zn2⁺]ᵢ in a time- and dose-dependent manner. Additionally, the production of mROS was observed in response to acrolein treatment. Subsequent experiments showed that the intracellular Zn2⁺ chelator TPEN could inhibit the acrolein-induced elevation of [Zn2⁺]ᵢ but did not affect the acrolein-induced mROS production. Conversely, the acrolein-induced elevation of mROS and [Zn2⁺]ᵢ were significantly decreased by the inhibitors of ROS formation (NaHSO3, NAC). Furthermore, external oxygen free radicals increased both [Zn2⁺]ᵢ levels and mROS production. These results demonstrated that acrolein-induced elevation of [Zn2⁺]ᵢ in A549 cells was mediated by mROS generation, rather than through a pathway where [Zn2⁺]ᵢ elevation leads to mROS production.


Assuntos
Acroleína , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Acroleína/toxicidade , Células A549 , Peróxido de Hidrogênio , Zinco/farmacologia
17.
Mol Biotechnol ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608078

RESUMO

Saikosaponin-a (SSa) exhibits antiepileptic effects. However, its poor water solubility and inability to pass through the blood-brain barrier greatly limit its clinical development and application. In this study, SSa-loaded Methoxy poly (ethylene glycol)-poly(ε-caprolactone) (MePEG-SSa-PCL) NPs were successfully prepared and characterized. Our objective was to further investigate the effect of this composite on acute seizure in mice. First, we confirmed the particle size and surface potential of the composite (51.00 ± 0.25 nm and - 33.77 ± 2.04 mV, respectively). Further, we compared the effects of various MePEG-SSa-PCL doses (low, medium, and high) with those of free SSa, valproic acid (VPA - positive control), and saline only (model group) on acute seizure using three different acute epilepsy mouse models. We observed that compared with the model group, the three MePEG-SSa-PCL treatments showed significantly lowered seizure frequency in mice belonging to the maximum electroconvulsive model group. In the pentylenetetrazol and kainic acid (KA) acute epilepsy models, MePEG-SSa-PCL increased both clonic and convulsion latency periods and shortened convulsion duration more effectively than equivalent SSa-only doses. Furthermore, hematoxylin-eosin and Nissl staining revealed considerably less neuronal damage in the hippocampal CA3 area of KA mice in the SSa, VPA, and three MePEG-SSa-PCL groups relative to mice in the model group. Hippocampal gamma-aminobutyric acid-A (GABA-A) receptor and cleaved caspase-3 expression levels in KA mice were significantly higher and lower, respectively, in the three MePEG-SSa-PCL treatment groups than in the model group. Thus, MePEG-SSa-PCL exhibited a more potent antiepileptic effect than SSa in acute mouse epilepsy models and could alleviate neuronal damage in the hippocampus following epileptic seizures, possibly via GABA-A receptor expression upregulation.

18.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415332

RESUMO

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Cisplatino/efeitos adversos , Necroptose , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
19.
Amino Acids ; 55(9): 1141-1155, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450047

RESUMO

Diabetic nephropathy (DN) can promote the occurrence of end-stage renal disease (ESRD). The injury of renal tubular epithelial cells is a significant reason for the occurrence of ESRD. A recent research demonstrated that ferroptosis was associated with renal tubular injury in DN. Ferroptosis is a kind of cell death brought on by the buildup of iron ions and lipid peroxidation brought on by ROS. Because carnosine (CAR) is a scavenger of iron ions and reactive oxygen species, we investigated whether CAR can improve DN by regulating ferroptosis. The results show that both CAR and Fer-1 significantly reduced kidney damage and inhibited ferroptosis in STZ mice. In addition, ferroptosis caused by HG or erastin (an inducer of ferroptosis) in human kidney tubular epithelial cell (HK2) was also rescued by CAR treatment. It was discovered that the protective effect of CAR against HG-induced ferroptosis was abolished when NRF2 was specifically knocked down in HK2 cells.

20.
Life Sci ; 328: 121896, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385371

RESUMO

AIMS: The aim of this study was to explore the fibrogenic effects of ATP-P1Rs axis and ATP-P2Rs axis on alcohol-related liver fibrosis (ALF). MATERIALS AND METHODS: C57BL/6J CD73 knock out (KO) mice were used in our study. 8-12 weeks male mice were used as an ALF model in vivo. In conclusion, after one week of adaptive feeding, 5 % alcohol liquid diet was given for 8 weeks. High-concentration alcohol (31.5 %, 5 g/kg) was administered by gavage twice weekly, and 10 % CCl4 intraperitoneal injections (1 ml/kg) were administered twice weekly for the last two weeks. The mice in the control group were injected intraperitoneally with an equivalent volume of normal saline. Fasting for 9 h after the last injection, blood samples were collected, and related indicators were tested. In vitro, rat hepatic stellate cells (HSCs) were treated with 200 µM acetaldehyde to establish an alcoholic liver fibrosis for 48 h, then tested related indicators. KEY FINDINGS: We found that both adenosine receptors including adenosine A1, A2A, A2B, A3 receptors (A1R, A2AR, A2BR, A3R) and ATP receptors including P2X7, P2Y2 receptors (P2X7R, P2Y2R) were expressed increased in ALF. After CD73 was knocked out, we found that adenosine receptors expression decreased, ATP expression increased, and fibrosis degree decreased. SIGNIFICANCE: Based on the research, we discovered that adenosine plays a more important role in ALF. Therefore, blocking the ATP-P1Rs axis represented a potential treatment for ALF, and CD73 will become a potential therapeutic target.


Assuntos
Etanol , Cirrose Hepática , Ratos , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Cirrose Hepática/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Camundongos Knockout , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA