RESUMO
Mechanically interlocked molecules, such as rotaxanes, have drawn significant attention within supramolecular chemistry. Although a variety of macrocycles have been thoroughly explored in rotaxane synthesis, metal-organic macrocycles remain relatively under-investigated. Aluminum molecular rings, with their inner cavities and numerous binding sites, present a promising option for constructing rotaxanes. Here, we introduce an innovative "ring-donorâ â â axle-acceptor" motif utilizing Al8 molecular rings, enabling the stepwise assembly of molecules, complexes, and polymers through tailored coordination chemistry. This novel approach can not only be applied to macrocycle-based systems like catenanes but also enhance specific functionalities progressively.
RESUMO
Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.
RESUMO
ConspectusRecent years have witnessed the development of cluster materials as they are atomically precise molecules with uniform size and solution-processability, which are unattainable with traditional nanoparticles or framework materials. The motivation for studying Al(III) chemistry is not only to understand the aggregation process of aluminum in the environment but also to develop novel low-cost materials given its natural abundance. However, the Al-related clusters are underdeveloped compared to the coinage metals, lanthanides, and transition metals. The challenge in isolating crystalline compounds is the lack of an effective method to realize the controllable hydrolysis of Al(III) ions. Compared with the traditional hydrolysis of inorganic Al(III) salts in highly alkaline solutions and hydrolysis of aluminum trialkyl compounds conducted carefully in an inert operating environment, we herein developed an effective way to control the hydrolysis of aluminum isopropanol through an alcoxalation reaction. By solvothermal/low melting point solid melting synthesis and using "ligand aggregation, solvent regulation, and supracluster assembly" strategies, our laboratory has established an organic-inorganic hybrid system of aluminum oxo clusters (AlOCs). The employment of organic ligands promotes the aggregation and slows the hydrolysis of Al(III) ions, which in turn improves the crystallization process. The regulation of the structure types can be achieved through the selection of ligands and the supporting solvents. Compared with the traditional condensed polyoxoaluminates, we successfully isolated a broad range of porous AlOCs, including aluminum molecular rings and Archimedes aluminum oxo cages. By studying ring expansion, structural transformation, and intermolecular supramolecular assembly, we demonstrate unique and unprecedented structural controllability and assembly behavior in cluster science. The advancement of this universal synthetic method is to realize materials customization through modularly oriented supracluster assembly. In this Account, we will provide a clear-cut definition and terminology of "ligand aggregation, solvent regulation, and supracluster assembly". Then we will discuss the discovery in this area by using a strategy, such as aluminum molecular ring, ring size expansion, ring supracluster assembly, etc. Furthermore, given the internal and external pore structures, as well as the solubility and modifiability of the AlOCs, we will demonstrate their potential applications in both the solid and liquid phases, such as iodine capture, the optical limiting responses, and dopant in polymer dielectrics. The strategy herein can be applied to extensive cluster science and promote the research of main group element chemistry. The new synthetic method, fascinating clusters, and unprecedented assembly behaviors we have discovered will advance Al(III) chemistry and will also lay the foundation for functional applications.
RESUMO
Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.
RESUMO
PURPOSE: The optimal primary recanalization strategy for intracranial atherosclerosis-related emergent large vessel occlusion (ICAS-ELVO) remains controversial. We aimed to explore the safety and efficacy of balloon angioplasty as the first-choice recanalization strategy for ICAS-ELVO with small clot burden. METHODS: Consecutive ICAS-ELVO patients presenting with microcatheter "first-pass effect" during endovascular treatment (EVT) were retrospectively analyzed. Patients were divided into preferred balloon angioplasty (PBA) and preferred mechanical thrombectomy (PMT) groups based on the first-choice recanalization strategy. The reperfusion and clinical outcomes between the two groups were compared. RESULTS: Seventy-six patients with ICAS-ELVO involving the microcatheter "first-pass effect" during EVT were enrolled. Compared with patients in the PMT group, those in the PBA group were associated with (i) a higher rate of first-pass recanalization (54.0% vs. 28.9%, p = .010) and complete reperfusion (expanded thrombolysis in cerebral ischemia ≥ 2c; 76.0% vs. 53.8%, p = .049), (ii) shorter puncture-to-recanalization time (49.5 min vs. 89.0 min, p < .001), (iii) lower operation costs (¥48,499.5 vs. ¥ 99,086.0, p < .001), and (iv) better 90-day functional outcomes (modified Rankin scale:0-1; 44.0% vs. 19.2%, p = .032). Logistic regression analysis revealed that balloon angioplasty as the first-choice recanalization strategy was an independent predictor of 90-day excellent functional outcomes for ICAS-ELVO patients with microcatheter "first-pass effect" (adjusted odds ratio = 6.01, 95% confidence interval: 1.15-31.51, p = .034). CONCLUSION: Direct balloon angioplasty potentially improves 90-day functional outcomes for ICAS-ELVO patients with small clot burden, and may be a more appropriate first-choice recanalization strategy than mechanical thrombectomy for these patients.
Assuntos
Angioplastia com Balão , Arteriosclerose Intracraniana , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/cirurgia , Estudos Retrospectivos , Trombectomia , Arteriosclerose Intracraniana/diagnóstico por imagem , Arteriosclerose Intracraniana/terapia , Arteriosclerose Intracraniana/complicações , Resultado do TratamentoRESUMO
Neolentinus is a significant genus, belonging to Gloeophyllaceae, with important economic and ecological values, which are parasites on decaying wood of broad-leaf or coniferous trees, and will cause brown rot. However, the taxonomic study is lagging behind to other groups of macrofungi, especially in China. In view of this, we conducted morphological and molecular phylogenetic studies on this genus. We have discovered new types of cheilocystidia and with extremely long lamellae in Neolentinus, and, thus proposed it as a new species-Neolentinus longifolius. At the same time, we clarified the distribution of Neolentinus cyathiformis in China and provided a detailed description. Moreover, we also described two common species, viz. Neolentinus lepideus and Neolentinus adhaerens. All the species are described based on the Chinese collections. The key to the reported species of Neolentinus from China is provided. And the phylogeny of Neolentinus from China is reconstructed based on DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), and the translation elongation factor 1-α gene (tef-1α). In addition, full morphological descriptions, illustrations, color photographs, taxonomic notes, and all the available sequences of Neolentinus species are provided.
Assuntos
Madeira , Filogenia , ChinaRESUMO
Hymenopellis is the genus that exhibits the highest number of species within the Xerula/Oudemansiella complex. Numerous species of Hymenopellis demonstrate edibility, and some of these species have been domesticated and cultivated. During an extensive survey carried out in Henan and Jilin Provinces, China, a substantial quantity of Hymenopellis specimens was gathered as a component of the macrofungal resource inventory. Based on the findings of morphological and molecular phylogenetic studies, a new species, Hymenopellis biyangensis, has been identified. A new record species, Hymenopellis altissima, has been discovered in China. Additionally, two new record species, Hymenopellis raphanipes and Xerula strigosa, have been found in Henan Province. Internal transcribed spacer (ITS) and large subunit ribosomal (nrLSU) were used to establish a phylogeny for species identification. Detailed descriptions, field habitat maps and line drawings of these species are presented. The discussion focuses on the relationships between newly discovered species and other related taxa. Additionally, this study provides and a key to the documented species of Hymenopellis and Xerula found in China.
Assuntos
Agaricales , Filogenia , DNA Fúngico/genética , ChinaRESUMO
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Assuntos
Benzofenonas , Poluentes Químicos da Água , Humanos , Águas Residuárias , Embalagem de Alimentos , EsgotosRESUMO
Clusters that can be experimentally precisely characterized and theoretically accurately calculated are essential to understanding the relationship between material structure and function. Here, we propose the concept of "supraclusters", which aim to connect "supramolecules" and "suprananoparticles" as well as reveal the unique assembly behavior of "supraclusters" with nanoparticle size at the molecular level. The implementation of supraclusters is full of challenges due to the difficulty in satisfying the ordered connectivity of clusters due to their abundant and dispersed hydrogen bonding sites. By solvothermal synthesis under a high catechol (H2 CATs) content, we successfully isolated a series of triangular {Al6 M3 } cluster compounds possessing brucite-like structural features. Interestingly, eight {Al6 M3 } clusters form 72-fold strong hydrogen bonding truncatedhexahedron Archimedean {Al6 M3 }8 supracluster cage (abbreviated as H-tcu). Surprisingly, the solution stability of the H-tcu was further proved by electrospray ionization mass spectrometry (ESI-MS) characterization. Therefore, it is not difficult to explain the reason for assembly of H-tcu into edge-directed and vertex-directed isomers. These porous supraclusters can be obtained by scale-up synthesis and exhibit a noticeable catalysis effect towards the condensation of acetone and p-nitrobenzaldehyde. As an intermediate state of supramolecule and suprananoparticle, the supracluster assembly can enrich the cluster chemistry and bring new structural types.
RESUMO
Arbuscular mycorrhizal fungi (AMF) are widely distributed microorganisms in the soil, playing an important role in vegetation succession, plant community diversity, and improving soil physicochemical properties. In this study, morphological identification and high-throughput sequencing technology were used to comprehensively analyze the AMF community composition and diversity at different succession stages of Songnen saline-alkali grassland. To determine the root colonization status of plants collected in the field, a colonization system was established using late-succession plants as host plants to verify the existence of mycorrhizal symbiosis and the matching phenomenon of AMF in Songnen saline-alkali grassland. The results indicated that both morphological methods and high-throughput sequencing technology showed that glomus was the dominant genus of AMF in Songnen saline grassland. Redundancy analysis (RDA) and linear regression analysis showed that electrical conductivity (EC) and pH were the main environmental factors affecting AMF species diversity and community structure in the succession sequence of Songnen saline grassland. In addition, the results of root colonization identification and the colonization system test in the field showed that AMF successfully colonized vegetation at different succession stages and had mycorrhizal symbiosis. The results of this study could help to understand the AMF community of Songnen saline-alkali grassland as well as provide a reference and basis for optimizing the AMF community structure of Songnen saline-alkali grassland through human intervention in the future and using mycorrhizal technology to restore and rebuild the degraded ecosystem of Songnen saline-alkali grassland.
RESUMO
Trihalomethanes (THMs) are classified as volatile organic compounds, considered to be a disinfection by-product during water disinfection process. THMs have been shown to be cytotoxic, genotoxic and mutagenic, with a risk of cancer when they contact with people directly. To protect public health and monitor water quality, it is important to monitor and measure THMs in drinking water. Therefore, it is crucial to develop fast, accurate, highly sensitivity and green analysis methods of THMs in various complicated matrices. Here, this review presents an overall summary of the current state of the pretreatment and detection methods for THMs in various sample matrices since 2005. In addition to the traditionally used pretreatment methods for THMs (such as headspace extraction, microwave-assisted extraction, liquid-liquid extraction), the new-developed methods, including solid-phase extraction, QuEChERS and different microextraction methods, have been summarized. The detection methods include gas chromatography-based methods, sensors and several other approaches. Additionally, benefits and limitations of different techniques were also discussed and compared. This study is anticipated to offer fruitful insights into the further advancement and widespread applications of pretreatment and detection technologies for THMs as well as for related substances.
Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Trialometanos/análise , Poluentes Químicos da Água/análise , Cromatografia Gasosa , Desinfecção , Qualidade da Água , Água Potável/análiseRESUMO
OBJECTIVE: To observe the anti-aging effects of moxibustion on age-related alterations in middle-aged mice. METHODS: Thirty, 9-month-old, male ICR mice were randomly divided into the moxibustion and control groups (N = 15). Mice in the moxibustion group were given mild moxibustion at the Guanyuan acupoint for 20 minutes every other day. After 30 treatments, neurobehavior tests, lifespan, gut microbiota composition and splenic gene expression were observed in the mice. RESULTS: Moxibustion improved the locomotor activity as well as motor function, activated the SIRT1-PPARα signaling pathway, ameliorated age-related alterations in gut microbiota, and affected the expression of genes related to energy metabolism in spleen. CONCLUSION: Moxibustion ameliorated age-related alterations in neurobehavior and gut microbiota in middle-aged mice.
RESUMO
BACKGROUND: Accurate identification of the histopathological grade and the Ki-67 expression level is important in clinical cases of soft tissue sarcomas (STSs). PURPOSE: To explore the feasibility of a radiomics model based on intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and diffusion kurtosis imaging (DKI) MRI parameter maps in predicting the histopathological grade and Ki-67 expression level of STSs. MATERIAL AND METHODS: In total, 42 patients diagnosed with STSs between May 2018 and January 2020 were selected. The MADC software in Functool of GE ADW 4.7 workstation was used to obtain standard apparent diffusion coefficient (ADC), D, D*, f, mean diffusivity, and mean kurtosis (MK). The histopathological grade and Ki-67 expression level of STSs were identified. The radiomics features of IVIM and DKI parameter maps were used as the dataset. The area under the receiver operating characteristic curve (AUC) and F1-score were calculated. RESULTS: D-SVM achieved the best diagnostic performance for histopathological grade. The AUC in the validation cohort was 0.88 (sensitivity: 0.75 [low level] and 0.83 [high level]; specificity: 0.83 [low level] and 0.75 [high level]; F1-score: 0.75 [low level] and 0.83 [high level]). MK-SVM achieved the best diagnostic performance for Ki-67 expression level. The AUC in the validation cohort was 0.83 (sensitivity: 0.83 [low level] and 0.50 [high level; specificity: 0.50 [low level] and 0.83 [high level]; F1-score: 0.77 [low level] and 0.57 [high level]). CONCLUSION: The proposed radiomics classifier could predict the pathological grade of STSs and the Ki-67 expression level in STSs.
Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Antígeno Ki-67/metabolismo , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Movimento (Física) , Sarcoma/diagnóstico por imagemRESUMO
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
RESUMO
Diuretics are drugs that promote the excretion of water and electrolytes in the body and produce diuretic effects. Clinically, they are often used in the treatment of edema caused by various reasons and hypertension. In sports, diuretics are banned by the World Anti-Doping Agency (WADA). Therefore, in order to monitor blood drug concentration, identify drug quality and maintain the fairness of sports competition, accurate, rapid, highly selective and sensitive detection methods are essential. This review provides a comprehensive summary of the pretreatment and detection of diuretics in various samples since 2015. Commonly used techniques to extract diuretics include liquid-liquid extraction, liquid-phase microextraction, solid-phase extraction, solid-phase microextraction, among others. Determination methods include methods based on liquid chromatography, fluorescent spectroscopy, electrochemical sensor method, capillary electrophoresis and so on. The advantages and disadvantages of various pretreatment and analytical techniques are elaborated. In addition, future development prospects of these techniques are discussed.
HIGHLIGHTSPretreatment and determination methods of diuretics in diverse samples are reviewed.Applications of novel materials and technologies for SPE and sensors are highlighted.Pros and cons of recent pretreatment and analysis techniques used for diuretics are discussed.Applications of high-resolution mass spectrometry are described in detail.
RESUMO
Presented herein is an example of the conversion of an aluminum oxo cluster (AlOC) to an aluminum oxo cluster organic cage (AlOCOC). We successfully synthesized the first example of an aluminum cluster-based organic cage-Al12 tetrahedral cage via an Al3 cluster. The use of 4-pyrazolecarboxylic acid plays an important role in the construction of the organic cage. Due to the presence of partially deprotonated ligands, the hydrogen-bonding interactions between the discrete tetrahedra generate porous supramolecular structures. Considering the high porosity and the abundant N-H sites, we further investigated the performance of the material towards iodine capture.
RESUMO
Epidemiological studies suggest that fetal growth restriction (FGR) caused by gestational cholestasis is associated with elevated serum cholic acid (CA). Here, we explore the mechanism by which CA induces FGR. Pregnant mice except controls were orally administered with CA daily from gestational day 13 (GD13) to GD17. Results found that CA exposure decreased fetal weight and crown-rump length, and increased the incidence of FGR in a dose-dependent manner. Furthermore, CA caused placental glucocorticoid (GC) barrier dysfunction via down-regulating the protein but not the mRNA level of placental 11ß-Hydroxysteroid dehydrogenase-2 (11ß-HSD2). Additionally, CA activated placental GCN2/eIF2α pathway. GCN2iB, an inhibitor of GCN2, significantly inhibited CA-induced down-regulation of 11ß-HSD2 protein. We further found that CA caused excessive reactive oxygen species (ROS) production and oxidative stress in mouse placentas and human trophoblasts. NAC significantly rescued CA-induced placental barrier dysfunction by inhibiting activation of GCN2/eIF2α pathway and subsequent down-regulation of 11ß-HSD2 protein in placental trophoblasts. Importantly, NAC rescued CA-induced FGR in mice. Overall, our results suggest that CA exposure during late pregnancy induces placental GC barrier dysfunction and subsequent FGR may be via ROS-mediated placental GCN2/eIF2α activation. This study provides valuable insight for understanding the mechanism of cholestasis-induced placental dysfunction and subsequent FGR.
Assuntos
Doenças Placentárias , Placenta , Gravidez , Feminino , Camundongos , Humanos , Animais , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Retardo do Crescimento Fetal/induzido quimicamente , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Placentárias/metabolismoRESUMO
Gastric cancer remains one of the most malignant cancers in the world. The target-based drugs approved by FDA for gastric cancer treatment include only three targets and benefit a small portion of gastric cancer patients. PIK3CA, a confirmed oncogene, mutates in 7-25% gastric cancer patients. PI3Kα inhibitor BYL719 has been approved for treating specific breast cancer. However, there is no comprehensive study about PI3Kα inhibitor in gastric cancer. In this study, we found pharmacological inhibition or knockdown of PI3Kα effectively inhibited the proliferation of partial gastric cancer cells. Then, we systematically explored the potential biomarkers for predicting or monitoring treatment response according to previous reports and found that basal expression of several receptor tyrosine kinases were related with the sensitivity of gastric cancer cells to BYL719. Next, RNA-seq technique was utilized and showed that BYL719 inhibited Myc targets V2 gene set in sensitive gastric cancer cells, and western blotting further verified that c-Myc was only inhibited in sensitive gastric cancer cells. More importantly, we firstly found BYL719 significantly elevated the expression of PIK3IP1 in sensitive gastric cancer cells, which was also observed in NCI-N87 cell derived xenograft mice models. Meanwhile, knockdown of PIK3IP1 partially rescued the cell growth inhibited by BYL719 in sensitive gastric cancer cells, suggesting the important role of PIK3IP1 in the antitumor activity of BYL719. In conclusion, our study provides biological evidence that PI3Kα is a promising target in specific gastric cancer and the elevation of PIK3IP1 could supply as a biomarker that monitoring treatment response.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Regulação para CimaRESUMO
The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.
Assuntos
Iodo , Estruturas Metalorgânicas , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo , Sítios de LigaçãoRESUMO
In this paper, we report a unique type of core-shell crystalline material that combines an inorganic zeolitic cage structure with a macrocyclic host arrangement and that can remove trace levels of iodine from water effectively. These unique assemblies are made up of an inorganic Archimedean truncatedhexahedron (tcu) polyhedron in the kernel which possesses six calixarene-like shell cavities. The cages have good adaptability to guests and can be assembled into a series of supramolecular structures in the crystalline state with different lattice pore shapes. Due to the unique core-shell porous structures, the compounds are not only stable in organic solvents but also in water. The characteristics of the cages enable rapid iodine capture from low concentration aqueous I2/KI solutions (down to 4 ppm concentration). We have studied the detailed process and mechanism of iodine capture and aggregation at the molecular level. The facile synthesis, considerable adsorption capacity, recyclability, and ß- and γ-radiation resistance of the cages should make these materials suitable for the extraction of iodine from aqueous effluent streams (most obviously, radioactive iodide produced by atomic power generation).