RESUMO
BACKGROUND: Polymyxins have been revived as a last-line therapeutic option for multi-drug resistant bacteria and continue to account for a significant proportion of global antibiotic usage. However, kidney injury is often a treatment limiting event with kidney failure rates ranging from 5 to 13%. The mechanisms underlying polymyxin-induced nephrotoxicity are currently unclear. Researches of polymyxin-associated acute kidney injury (AKI) models need to be more standardized, which is crucial for obtaining consistent and robust mechanistic results. METHODS: In this study, male C57BL/6 mice received different doses of polymyxin B (PB) and polymyxin E (PE, also known as colistin) by different routes once daily (QD), twice daily (BID), and thrice daily (TID) for 3 days. We continuously monitored the glomerular filtration rate (GFR) and the AKI biomarkers, including serum creatinine (Scr), blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1). We also performed histopathological examinations to assess the extent of kidney injury. RESULTS: Mice receiving PB (35 mg/kg/day subcutaneously) once daily exhibited a significant decrease in GFR and a notable increase in KIM-1 two hours after the first dose. Changes in GFR and KIM-1 at 24, 48 and 72 h were consistent and demonstrated the occurrence of kidney injury. Histopathological assessments showed a positive correlation between the severity of kidney injury and the changes in GFR and KIM-1 (Spearman's rho = 0.3167, P = 0.0264). The other groups of mice injected with PB and PE did not show significant changes in GFR and AKI biomarkers compared to the control group. CONCLUSION: The group receiving PB (35 mg/kg/day subcutaneously) once daily consistently developed AKI at 2 h after the first dose. Establishing an early and stable AKI model facilitates researches into the mechanisms of early-stage kidney injury. In addition, our results indicated that PE had less toxicity than PB and mice receiving the same dose of PB in the QD group exhibited more severe kidney injury than the BID and TID groups.
RESUMO
Excellent traditional culture is the root and soul of a nation, which is the carrier of historical precipitation and continuous development. In this aspect, Hubei folk art of carved paper-cutting has important cultural value and historical significance in the composition of Chinese traditional culture, which is a national intangible cultural heritage under key protection and urgently needs to be carried forward. This paper carried out an empirical study using the survey and comparative analysis methods on the feature extraction for Hubei folk art of carved paper-cutting. Through investigation and comparative analysis of vast artworks of Hubei carved paper-cutting, the classics are selected as the representative to extract the regional characteristics, the artistic values, and the composition and modelling methods. Results indicate that the common features exist on the artistic values in beautification of life and education, the composition principles of central-based, symmetry, balanced or conformal, and the modelling techniques using Yin and Yang carving, unobstructive perspective, distortion and exaggeration. However, the regional features in cultural expression, folklore communication, modelling skills are apparent and strong interlinked with the regional historical development in social activities, labor productivity and surrounding environment. This study provides a multi-dimensional perspective for the modern inheritance and development of traditional Hubei artworks of carved paper-cutting with specified characteristics.
Assuntos
Arte , Humanos , China , PapelRESUMO
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Assuntos
Axônios , Camundongos Transgênicos , Neurônios , Córtex Somatossensorial , Vibrissas , Animais , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/citologia , Camundongos , Axônios/fisiologia , Vibrissas/fisiologia , Vibrissas/inervação , Neurônios/fisiologia , Optogenética , Masculino , FemininoRESUMO
A simple turn-off fluorescent probe, 5-(diethylamino)-2-(hydrazonomethyl)phenol (DHP), is designed and synthesized for the sensitive and selective detection of Cu2+. The bright green fluorescence of DHP is quenched after the addition of Cu2+. The probe DHP exhibits good anti-interference performance against Cu2+ in the presence of multiple metal ions. The fluorescence intensity of DHP (10 µM) at 522 nm is well linearized with the Cu2+ concentration at 0-5 µM, and it has a detection limit of 0.29 nM (R2 = 0.9949). The complexation ratio of the probe DHP to Cu2+ is 2 : 1 and the complexation constant is 3.44 × 104 M-1 (R2 = 0.9974). In addition, the probe DHP can be recovered using EDTA and Cu2+ can be effectively monitored at pH 5-11, with good results in dipstick experiments and actual water samples. HepG-2 cells remained viable in excess of 90% after being exposed to DHP (50 µM) for 24 h, which demonstrates the extremely low toxicity of DHP, and it can be used for in vivo cell imaging.
RESUMO
In this study, we dynamically monitored the glomerular filtration rate and other assessment of renal function and markers of injury in various mice models of acute kidney injury. Male C57BL/6 mice were utilized to establish acute kidney injury models of sepsis, ischemia reperfusion, cisplatin, folic acid, aristolochic acid and antibiotic. In addition to the real time glomerular filtration rate, renal LCN-2 and HAVCR-1 mRNA expression levels, and serum creatinine, urea nitrogen and cystatin c levels were also used to evaluate renal function. In addition, the protein levels of LCN-2 and HAVCR-1 in renal, serum and urine were measured. Our results demonstrated that the changes in biomarkers always lagged the real time glomerular filtration rate during the progression and recovery of renal injury. Cystatin-c can reflect renal injury earlier than other markers, but it remains higher in the recovery stage. Perhaps the glomerular filtration rate does not reflect the greater injury caused by vancomycin plus piperacillin.
Assuntos
Injúria Renal Aguda , Biomarcadores , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Lipocalina-2 , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/sangue , Injúria Renal Aguda/fisiopatologia , Masculino , Biomarcadores/sangue , Biomarcadores/metabolismo , Lipocalina-2/sangue , Lipocalina-2/urina , Cistatina C/sangue , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/sangue , Rim/fisiopatologia , Rim/metabolismo , Rim/patologia , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ácido Fólico/sangue , Creatinina/sangue , Traumatismo por Reperfusão/fisiopatologia , Sepse/complicações , Sepse/sangue , Sepse/fisiopatologia , CisplatinoRESUMO
Rapid and sensitive detection of pathogenic bacteria is crucial for disease prevention and control. The CRISPR/Cas12a system with the DNA cleavage capability holds promise in pathogenic bacteria diagnosis. However, the sensitivity of CRISPR-based assays remains a challenge. Herein, we report a versatile and sensitive pathogen sensing platform (HTCas12a) based on the CRISPR/Cas12a system, hybridization chain reaction (HCR) and Poly T-copper fluorescence nanoprobe. The sensitivity is improved by HCR and the Poly-T-Cu reporter probe reduces the overall experiment cost to less than one dollar per sample. Our results demonstrate the specific recognition of target nucleic acid fragments from other pathogens. Furthermore, a good linear correlation between fluorescence intensity and target quantities were achieved with detection limits of 23.36 fM for Target DNA and 4.17 CFU/mL for S.aureus, respectively. The HTCas12a system offers a universal platform for pathogen detection in various fields, including environmental monitoring, clinical diagnosis, and food safety.
Assuntos
Sistemas CRISPR-Cas , Cobre , Hibridização de Ácido Nucleico , Cobre/química , Poli T/química , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , DNA Bacteriano , Limite de Detecção , Corantes Fluorescentes/química , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPRRESUMO
As global ecological degradation intensifies, the long-term impacts of afforestation on productivity and soil fertility in barren lands have become critical in improving global ecological security and productivity. Through meta-analysis, this study integrates data from 109 barren land afforestation sites across China, aiming to comprehensively analyze the effects on plant productivity and soil fertility while identifying the key environmental drivers of these changes. We found that afforestation consistently enhances plant productivity across 60 years. However, soil fertility and moisture initially surged significantly after afforestation but gradually declined after the first decade, indicating the limited long-term benefits. Climatic factors, namely precipitation and humidity index, are crucial in enhancing plant productivity, while geographic factors, specifically lower elevations and gentler slopes, are associated with greater increases in soil fertility. Elevation and slope are two key factors that influence soil moisture after afforestation. These findings highlight the need for ongoing soil management and ecological maintenance in afforestation projects to sustain the soil fertility benefits. Our study provides a robust scientific foundation for afforestation strategies aimed at barren land restoration and offers valuable insights for policy formulation in barren land afforestation.
RESUMO
OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.
Assuntos
Bactérias , Líquido da Lavagem Broncoalveolar , Microbiota , Faringe , RNA Ribossômico 16S , Síndrome do Desconforto Respiratório , Sepse , Humanos , Masculino , Feminino , Síndrome do Desconforto Respiratório/microbiologia , Pessoa de Meia-Idade , Faringe/microbiologia , RNA Ribossômico 16S/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Idoso , Sepse/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Alvéolos Pulmonares/microbiologia , Adulto , Unidades de Terapia Intensiva , Microbioma GastrointestinalRESUMO
Hypoxic preconditioning (HPC) has been shown to improve organ tolerance to subsequent severe hypoxia or ischemia. However, its impact on intestinal ischemic injury has not been well studied. In this study, we evaluated the effects of HPC on intestinal ischemia in rats. Intestinal rehabilitation, levels of fatty acid oxidation (FAO) by-products, intestinal stem cells (ISCs), levels of hypoxia-inducible factor 1 subunit α (HIF-1α) and its downstream genes such as peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyltransferase 1a (CPT1A) were assessed at distinct time intervals following intestinal ischemia with or without the interference of HIF-1α. Our data showed that HPC facilitates the restoration of the intestinal structure and enhances the FAO, by boosting intestinal stem cells. Additionally, HIF-1α, PPARα, and CPT1A mRNA and their protein levels were generally up-regulated in the small intestine of HPC rats as compared to the control group. Our vitro experiment also shows low-oxygen induces highly levels of HIF-1α and its downstream genes, with a concurrent increase in FAO products in IEC-6 cells. Furthermore, the above phenomenon could be reversed by silencing HIF-1α. In conclusion, we hypothesize that HPC can stimulate the activation of intestinal stem cells via HIF-1α/PPARα pathway-mediated FAO, thereby accelerating the healing process post ischemic intestinal injury.
RESUMO
Background: In 2020, our center established a Tanner-Whitehouse 3 (TW3) artificial intelligence (AI) system using a convolutional neural network (CNN), which was built upon 9059 radiographs. However, the system, upon which our study is based, lacked a gold standard for comparison and had not undergone thorough evaluation in different working environments. Methods: To further verify the applicability of the AI system in clinical bone age assessment (BAA) and to enhance the accuracy and homogeneity of BAA, a prospective multi-center validation was conducted. This study utilized 744 left-hand radiographs of patients, ranging from 1 to 20 years of age, with 378 boys and 366 girls. These radiographs were obtained from nine different children's hospitals between August and December 2020. The BAAs were performed using the TW3 AI system and were also reviewed by experienced reviewers. Bone age accuracy within 1 year, root mean square error (RMSE), and mean absolute error (MAE) were statistically calculated to evaluate the accuracy. Kappa test and Bland-Altman (B-A) plot were conducted to measure the diagnostic consistency. Results: The system exhibited a high level of performance, producing results that closely aligned with those of the reviewers. It achieved a RMSE of 0.52 years and an accuracy of 94.55% for the radius, ulna, and short bones series. When assessing the carpal series of bones, the system achieved a RMSE of 0.85 years and an accuracy of 80.38%. Overall, the system displayed satisfactory accuracy and RMSE, particularly in patients over 7 years old. The system excelled in evaluating the carpal bone age of patients aged 1-6. Both the Kappa test and B-A plot demonstrated substantial consistency between the system and the reviewers, although the model encountered challenges in consistently distinguishing specific bones, such as the capitate. Furthermore, the system's performance proved acceptable across different genders and age groups, as well as radiography instruments. Conclusions: In this multi-center validation, the system showcased its potential to enhance the efficiency and consistency of healthy delivery, ultimately resulting in improved patient outcomes and reduced healthcare costs.
RESUMO
Pre-pulses caused by the post-pulses in the optical parametric chirped-pulse amplifier were comprehensively studied for the first time, including the underlying mechanism for the delay-shift of pre-pulses, the intensity variation of pre-pulses affected by the initial delay of post-pulses and the pump energy, and also the nonlinear beat noise. The simulation and measurement confirmed that the high-order dispersion of the pulse stretcher was the main cause for the delay-shift of pre-pulses, which should be similar with the chirped-pulse amplifiers. The intensity of pre-pulses would decrease significantly as the initial delay of post-pulses increased, but would increase with the growth of pump energy. Moreover, the temporal position of the nonlinear beat noise in the experiment was successfully predicted by our simulation. This work could help us better understand the pre-pulses in OPCPA and provide helpful guidance for designing high-contrast laser systems.
RESUMO
Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée) are the most devastating insect pests at the ear stage of maize, causing significant losses to the sweet corn industry. Pesticide control primarily relies on spraying during the flowering stage, but the effectiveness is inconsistent since larvae are beneath husks within hours to a day, making pesticide treatments simpler to avoid. Insufficient understanding of pest activity patterns impedes precise and efficient pesticide control. H. armigera and O. furnacalis in corn fields were monitored in the last few years in Beijing China, and we observed a higher occurrence of both moths during the R1 stage of sweet corn. Moth captures reached the maximum during this stage, with 555-765 moths per hectare corn field daily. The control efficiency of nine synthetic insecticides and five biopesticides was assessed in the field during this period. Virtako, with mineral oil as the adjuvant, appeared to be the most effective synthetic insecticide, with the efficiencies reaching 88% and 87% on sweet and waxy corn, respectively. Pesticide residue data indicated that the corn is safe after 17 days of its use. The most effective bioinsecticide was Beauveria bassiana combined with mineral oil, with 88% and 80% control efficiency in sweet and waxy corn, respectively. These results suggested that spraying effective insecticides 5 days after corn silking could effectively control corn ear pests H. armigera and O. furnacalis. Our findings provide valuable insights for the development of ear pest management strategies in sweet corn.
RESUMO
Fe-based LDHs have been proven to be an excellent class of catalysts for the oxygen evolution reaction (OER). To achieve industrial applications of water splitting, it is critical to develop a cost-effective and simple strategy to achieve large-area catalytic electrodes. Herein, we present a moderate in situ method for growing Fe-based layered double hydroxide nanosheets on a Ni foam (LDH@NF) substrate at room temperature. Through systematic experimental design characterization, it is found that this in situ growth process is mainly driven by moderate oxidation of Fe2+ in an O2-dissolved solution, the consequent local alkaline environment, and abundant TM2+ ions (Ni2+, Co2+, Ni2+/Co2+). Compared with other in situ methods, this method is not accompanied by violent redox reactions and is favorable for the uniform growth of LDHs, and the composition of the catalyst can be easily regulated. Specifically, the optimized NiFe-LDH@NF catalyst demonstrates excellent catalytic performance in the alkaline water oxidation reaction with a low overpotential of 206/239 mV at a current density of 10/100 mA cm-2, respectively.
RESUMO
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
RESUMO
We are constantly bombarded by sensory information and constantly making decisions on how to act. In order to optimally adapt behavior, we must judge which sequences of sensory inputs and actions lead to successful outcomes in specific circumstances. Neuronal circuits of the basal ganglia have been strongly implicated in action selection, as well as the learning and execution of goal-directed behaviors, with accumulating evidence supporting the hypothesis that midbrain dopamine neurons might encode a reward signal useful for learning. Here, we review evidence suggesting that midbrain dopaminergic neurons signal reward prediction error, driving synaptic plasticity in the striatum underlying learning. We focus on phasic increases in action potential firing of midbrain dopamine neurons in response to unexpected rewards. These dopamine neurons prominently innervate the dorsal and ventral striatum. In the striatum, the released dopamine binds to dopamine receptors, where it regulates the plasticity of glutamatergic synapses. The increase of striatal dopamine accompanying an unexpected reward activates dopamine type 1 receptors (D1Rs) initiating a signaling cascade that promotes long-term potentiation of recently active glutamatergic input onto striatonigral neurons. Sensorimotor-evoked glutamatergic input, which is active immediately before reward delivery will thus be strengthened onto neurons in the striatum expressing D1Rs. In turn, these neurons cause disinhibition of brainstem motor centers and disinhibition of the motor thalamus, thus promoting motor output to reinforce rewarded stimulus-action outcomes. Although many details of the hypothesis need further investigation, altogether, it seems likely that dopamine signals in the striatum might underlie important aspects of goal-directed reward-based learning.
Assuntos
Dopamina , Estriado Ventral , Dopamina/metabolismo , Aprendizagem , Recompensa , Neurônios Dopaminérgicos/metabolismo , Estriado Ventral/metabolismoRESUMO
Post-compression can effectively further improve the peak power of laser pulses by shortening the pulse duration. Which has been investigated in various ranges of energy and central wavelength. However, the spatial intensity profile of high-peak-power laser pulses is generally inhomogeneous due to pump lasers, imperfect optical components, and dust in the optical layout. In post-compression, the B-integral is proportional to intensity, and wavefront distortions are induced in the spectral broadening stage, leading to a decrease in focusing intensity. Moreover, the beam intensity may be strongly modulated and beam inhomogeneity will be intensified in this process, causing damage to optical components and limiting the achievement of high peak power enhancement. In this study, to address these challenges, the laser pulse is first smoothed by introducing spatial dispersion using prism pairs or asymmetric four-grating compressors, and then the smoothed pulse is used for post-compression. The simulation results indicate that this method can effectively remove hot spots from laser pulses and maintain high peak power enhancement in post-compression.
RESUMO
The protection of the Yangtze River is an important national strategy in China, but it faces many problems such as difficult water environment protection, unclear pollution sources, and low integration of measures. Aimed at addressing watershed scale multi-source pollution together with facing the bottleneck method, by combining research data analysis, mechanism model, and intelligent algorithm optimization, this study built the framework for accurate pollution apportionment, measures evaluation, and overall measure optimization. Shun'an watershed in Tongling City of Anhui Province was set as an example for the application. The results showed that the new method could accurately quantify the impacts of planting industry, rural life, livestock and poultry breeding, aquaculture, industrial sewage, and domestic sewage in the watershed and evaluate the overall effects of various measures. The multi-objective optimization algorithm provided a cooperative multi-source pollution control scheme with higher cost performance and better environmental benefit by comparing the cost effectiveness of various schemes systematically. The optimization scheme showed that total nitrogen could be reduced by 1274.24 t·a-1 in wet years, 855.24 t·a-1 in normal years, and 381.96 t·a-1 in dry years. Total phosphorus was reduced by 321.42 t·a-1 in wet years, 159.80 t·a-1 in normal years, and 42.93 t·a-1 in dry years, such that the water quality reached the surface class â ¢ water quality standard. These research results can be extended to other watersheds and provide a method reference for water environment protection under the background of the high-quality development of watersheds.
RESUMO
Plasmonic-WS2 hybrids have attracted widespread interest for plasmon driven catalytic reactions. In this work, a Ag nanoparticles (NPs)/WS2 hybrid was fabricated by utilizing a one-step anodized Al template-assisted vacuum thermal evaporation technique and wet transfer method. To optimize the catalytic performance, the morphological evolution and corresponding changes in the catalytic properties of the Ag NPs/WS2 hybrid at different thermal annealing temperatures were investigated. It was found that the surface-enhanced Raman scattering (SERS) and catalytic activity of the hybrid were optimized by tuning the annealing temperature, with the optimal SERS and catalytic properties observed at 290 °C. These results may open new avenues for improving the efficiency and expanding the research field of plasmon-driven reactions.
RESUMO
Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10-9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment.
RESUMO
CONCLUSION: Upon wound formation, the wound temperature rises in the first 3-4 days until reaching its peak. It then falls at about one week after wound formation. In the second week after wound formation, the wound temperature decreases steadily to the baseline indicating a good wound condition and progression towards healing. While a continuous high temperature is often a sign of excessive inflammation or infection, which indicates urgent need of intervention and treatment.