Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Biol Macromol ; 261(Pt 1): 129716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290624

RESUMO

In this study, soy protein isolate (SPI) and maltose (M) were employed as materials for the synthesis of a covalent compound denoted as SPI-M. The emulsion gel was prepared by transglutaminase (TGase) as catalyst, and its freeze-thaw stability was investigated. The occurrence of Maillard reaction was substantiated through SDS-PAGE. The analysis of spectroscopy showed that the structure of the modified protein was more stretched, changed in the direction of freeze-thaw stability. After three freeze-thaw cycles (FTC), it was observed that the water holding capacity of SPI-M, SPI/M mixture (SPI+M) and SPI emulsion gels exhibited reductions of 8.49 %, 16.85 %, and 20.26 %, respectively. Moreover, the soluble protein content also diminished by 13.92 %, 23.43 %, and 35.31 %, respectively. In comparison to unmodified SPI, SPI-M exhibited increase in gel hardness by 160 %, while elasticity, viscosity, chewability, and cohesion demonstrated reductions of 17.7 %, 23.3 %, 33.3 %, and 6.76 %, respectively. Concurrently, the SPI-M emulsion gel exhibited the most rapid gel formation kinetics. After FTCs, the gel elastic modulus (G') and viscosity modulus (G″) of SPI-M emulsion were the largest. DSC analysis underscored the more compact structure and heightened thermal stability of the SPI-M emulsion gel. SEM demonstrated that the SPI-M emulsion gel suffered the least damage following FTCs.


Assuntos
Maltose , Proteínas de Soja , Emulsões/química , Proteínas de Soja/química , Transglutaminases , Géis/química
2.
Int J Biol Macromol ; 254(Pt 3): 127956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951451

RESUMO

Food protein-derived amyloid fibrils possess great untapped potential applications in food and other biomaterials. The objective of this report was to investigate the formation mechanism, structure and functional characterization of soy protein amyloid fibrils (SPF) through hydrolysis and heating (pH 2.0, 85 °C, 0-24 h) of soy protein isolate (SPI). Fibrillation growth analysis indicated polypeptide hydrolysis upon hydrolytic heating, and the amyloid fibrils were basically formed 8 h later. The microstructure of SPF was monitored by transmission electron microscopy and scanning electron microscopy, exhibiting change from an irregular spherical structure to a coiled, intertwined thread-like polymer. The secondary structures of SPI all changed drastically during the fibrillation process was characterized by Fourier transform infrared spectroscopy, which the α-helical and ß-turned content decreasing by 12.67 % and 5.07 %, respectively, and the content of ordered ß-folded structures increasing with heating time, finally increasing to 53.61 % at 24 h. The fluorescence intensity of the endogenous fluorescence spectra decreased and the maximum emission wavelength was red-shifted, suggesting that the fibrillation unfolded the protein structure, hydrolyzed and self-assembled into amyloid fibrils aggregates obscuring the aromatic amino acid residues. The emulsification activity, emulsion stability and viscosity of SPF improved with the increase in protein fibrillation.


Assuntos
Amiloide , Proteínas de Soja , Amiloide/química , Proteínas de Soja/química , Estrutura Secundária de Proteína , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Acta Biomater ; 171: 543-552, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739245

RESUMO

Sonodynamic therapy (SDT) is a physical therapy that utilizes critical sonosensitizers triggered by ultrasound to achieve an effective non-invasive tumor treatment. However, the inadequate sonodynamic efficacy and low responsive activities of traditional inorganic sonosensitizers have hindered its practical application. Here, we rationally design a platinum-zinc oxide (PtZnO) sonosensitizer to significantly enhance the efficacy of SDT through its inherent bandgap structure and dual-nanozyme activities. The PtZnO possesses a narrow bandgap (2.89 eV) and an appropriate amount of oxygen defects, which promote the efficiency of electrons and holes separation and the generation of reactive oxygen species (ROS) under US irradiation. Simultaneously, the PtZnO exhibits both catalase-like and peroxidase-like activities, which effectively catalyze endogenous H2O2 into a large number of O2 and toxic hydroxyl radicals (•OH), thus achieving an efficient enhancement of SDT and catalytic therapy. Moreover, the PtZnO has significant glutathione consumption performance, further amplifying the oxidative stress. Ultimately, the PtZnO achieves a triple ROS amplification effect, with the yields of singlet oxygen (1O2) and •OH reaching 859.1 % and 614.4 %, respectively, inducing a highly effective sono-catalytic therapy with a remarkable tumor inhibition rate of 98.1 %. This study expands the application of ZnO semiconductor heterojunctions in the nanomedicine area, and the simple yet efficient design of the PtZnO provides a strategy for the development of sonosensitizers. STATEMENT OF SIGNIFICANCE: A platinum-zinc oxide (PtZnO) heterojunction sonosensitizer is constructed with dual-nanozyme activities and achieves a triple ROS amplification effect, leading to an efficient synergistic sono-catalytic therapy. The PtZnO owns an inherent narrow bandgap and abundant oxygen defects, thus exhibiting an efficient sonosensitizer performance. It also possesses both catalase-like and peroxidase-like activities, which effectively catalyze the endogenous H2O2 into a large quantity of O2 and toxic hydroxyl radicals, thereby enhancing the SDT and catalytic therapy. Furthermore, its prominent glutathione consumption performance further amplifies oxidative stress. The yields of singlet oxygen and hydroxyl radicals reach up to 859.1 % and 614.4 %, respectively, inducing a highly effective sono-catalytic therapy with an impressive tumor inhibition rate of 98.1 %.


Assuntos
Neoplasias , Terapia por Ultrassom , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Zinco , Espécies Reativas de Oxigênio , Catalase , Platina/farmacologia , Oxigênio Singlete , Peróxido de Hidrogênio , Oxigênio , Glutationa , Linhagem Celular Tumoral
4.
Macromol Biosci ; 23(5): e2200520, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950868

RESUMO

Adjuvants are widely used in vaccine to improve the protection or treatment efficacy. However, so far they inevitably produce side effects and are hard to induce cellular immunity in practical application. Herein, two kinds of amphiphilic poly(glutamic acid) nanoparticles (α-PGA-F and γ-PGA-F NPs) as nanocarrier adjuvants are fabricated to induce an effective cellular immune response. Amphiphilic PGA are synthesized by grafting phenylalanine ethyl ester to form biodegradable self-assembly nanoadjuvants in a water solution. The model antigen, chicken ovalbumin (OVA), can be loaded into PGA-F NPs (OVA@PGA-F NPs) with the high loading ratio >12%. Moreover, compared with γ-PGA-F NPs, the acidic environment can induce the α-helical secondary structure of α-PGA NPs, promoting membrane fusion and more fast antigen lysosomal escape. Hence, the antigen presenting cells treated with OVA@α-PGA-F NPs show higher secretion of inflammatory cytokines, and higher expression of major biological histocompatibility complex class I and CD80 than those of OVA@γ-PGA-F NPs. Overall, this work indicates that pH responsive α-PGA-F NPs as a carrier adjuvant can effectively improve the ability of cellular immune responses, leading to it being a potent candidate for vaccine applications.


Assuntos
Nanopartículas , Vacinas , Aminoácidos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Imunidade Celular , Nanopartículas/química , Concentração de Íons de Hidrogênio , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/química
5.
Pulm Circ ; 13(1): e12187, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733313

RESUMO

We examined the efficacy and safety of Liushen pill combined with basic treatment for patients with COVID-19. In total, 181 patients hospitalized with COVID-19, classified as asymptomatic mild type, were randomly divided into the experimental (n = 91) and control (n = 90) groups and were administered placebo (Maizao decoction) and Maizao decoction and Liushen pill, in addition to standard care, respectively. The negative conversion rate of nucleic acid (Day 7), hospital discharge rate (Days 8, 10, and 14), symptom disappearance rate (Days 3, 5, and 7), inflammatory cytokine levels, and adverse events were compared between the groups. The negative viral conversion rate was significantly higher in the experimental than in the control group (48.35 vs. 31.11%, p < 0.05). Subgroup analysis showed a similar significant trend when the Ct value was ≤30 at baseline. After 10 days, the hospital discharge rate was significantly higher in the experimental than in the control group (69.23 vs. 53.33%, p < 0.05). After 3-day medication, the headache symptoms significantly disappeared in the experimental (88.57%) compared to the control group (63.33%) (p < 0.05). After 5 days, the symptom disappearance rates of headache and cough were significantly higher in the experimental (97.14%) than in the control group (97.14 vs. 80.00, p < 0.05; 82.65 vs. 58.93%, p < 0.01, respectively). Posttreatment, the procalcitonin level was significantly lower in the experimental than in the control group (0.09 ± 0.00 vs. 0.14 ± 0.05 ng/L; p < 0.05). There were no significant between-group differences in clinical safety test indices. Early intervention with Liushen pill improved cough and headache and increased negative viral conversion and discharge rate.

6.
J Sci Food Agric ; 103(2): 811-819, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36036167

RESUMO

BACKGROUND: Using transglutaminase (TGase) is a new method to improve protein properties in order to promote protein glycosylation. This article mainly studies soy protein isolate (SPI) and glucosamine to improve the freeze-thaw stability of emulsion under the action of TGase. The degree of glycosylation was studied by the content of free amino groups and the degree of conjugation. The optimal conditions for preparing soy protein isolate-glucosamine (SPI-G) conjugate were determined by a response surface optimization model based on single-factor experiments using the creaming index of the emulsion after the first freeze-thaw cycle as the response value. RESULTS: The results showed that the emulsion had the lowest creaming index when the conditions of protein concentration was 20 g L-1 , mass ratio of SPI-G was 5:3 (w/w), enzyme addition amount was 10 U g-1 , and reaction time was 2 h. The optimized modified product was measured for the creaming index after the first freeze-thaw cycle. It was found that the creaming index of the modified product SPI-G after the first freeze-thaw cycle was 9.02%, which was less than and close to the optimized model predicted value. The creaming index and optical microscopy results after three freeze-thaw cycles confirmed that the freeze-thaw stability of the SPI-G samples was significantly enhanced after optimization of the response surface model. CONCLUSION: It showed that glycosylation promoted by TGase could improve the freeze-thaw stability of SPI emulsion, thereby broadening the application of SPI in food. © 2022 Society of Chemical Industry.


Assuntos
Glucosamina , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Glucosamina/química , Congelamento , Fenômenos Químicos , Transglutaminases
7.
Bioconjug Chem ; 33(10): 1934-1943, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36111663

RESUMO

Gold nanoparticles (Au NPs) used as photosensitizers for photothermal therapy (PTT) have attracted extensive attention. However, limited tissue penetration of light seriously hinders the practical application, causing Au NPs to be combined with multiple theranostic agents to improve the treatment effect. Herein, we fabricate one potent gold nanostars (GNS) that can unify the dual nanozyme activities and photothermal property, achieving effective synergistic cascade catalytic and photothermal therapy. Notably, GNS is prepared by a green and facile one-step synthesis method using biodegradable poly(γ-glutamic acid) as a medium. The single GNS exhibits inherent dual nanozyme activities, glucose oxidase- and peroxidase-like activities, which not only convert glucose of tumor tissue into hydrogen peroxide (H2O2) but also catalyze H2O2 to produce the amount of toxic hydroxyl radicals (•OH), leading to an amplified cascade catalytic therapy. Moreover, the cascade catalytic activity of GNS is enhanced 1.4-fold in the photothermal effect. Finally, the GNS can achieve photoacoustic imaging-guided efficient synergistic cascade catalytic and photothermal therapy with a high antitumor rate of 97.0%. This simple but multifunctional GNS could provide a new strategy facilitating the practical treatment application of single Au NPs.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/uso terapêutico , Fármacos Fotossensibilizantes , Peróxido de Hidrogênio , Nanomedicina Teranóstica , Nanopartículas Metálicas/uso terapêutico , Glucose Oxidase , Neoplasias/terapia , Glucose , Peroxidases , Linhagem Celular Tumoral
8.
PeerJ Comput Sci ; 7: e802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909466

RESUMO

Massive plant hyperspectral images (HSIs) result in huge storage space and put a heavy burden for the traditional data acquisition and compression technology. For plant leaf HSIs, useful plant information is located in multiple arbitrary-shape regions of interest (MAROIs), while the background usually does not contain useful information, which wastes a lot of storage resources. In this paper, a novel hyperspectral compressive sensing framework for plant leaves with MAROIs (HCSMAROI) is proposed to alleviate these problems. HCSMAROI only compresses and reconstructs MAROIs by discarding the background to achieve good reconstructed performance. But for different plant leaf HSIs, HCSMAROI has the potential to be applied in other HSIs. Firstly, spatial spectral decorrelation criterion (SSDC) is used to obtain the optimal band of plant leaf HSIs; Secondly, different leaf regions and background are distinguished by the mask image of the optimal band; Finally, in order to improve the compression efficiency, after discarding the background region the compressed sensing technology based on blocking and expansion is used to compress and reconstruct the MAROIs of plant leaves one by one. Experimental results of soybean leaves and tea leaves show that HCSMAROI can achieve 3.08 and 5.05 dB higher PSNR than those of blocking compressive sensing (BCS) at the sampling rate of 5%, respectively. The reconstructed spectra of HCSMAROI are especially closer to the original ones than that of BCS. Therefore, HCSMAROI can achieve significantly higher reconstructed performance than that of BCS. Moreover, HCSMAROI can provide a flexible way to compress and reconstruct different MAROIs with different sampling rates, while achieving good reconstruction performance in the spatial and spectral domains.

9.
Opt Lett ; 46(21): 5505-5508, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724512

RESUMO

The erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whispering gallery single-mode laser (WGSML) by making use of a coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whispering gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, the output power of the WGSML increases, and the central wavelength can be changed from 1560.30 to 1560.40 nm. Furthermore, 1560.60 and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between the microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.

10.
J Cancer ; 12(15): 4463-4477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149910

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.

11.
Opt Lett ; 45(15): 4100-4103, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735233

RESUMO

Lithium tantalate (LT) is one of the most attractive optical nonlinear materials, as it possesses a high optical damage threshold and great UV transparency (0.28-5.5 µm). Recently, optical grade LT nanoscale film was developed. Here a high-quality-factor (∼105) LT microdisk resonator based on LT-on-insulator (LTOI) film is fabricated by utilizing focused ion beam (FIB) milling. 2 µW output second-harmonic waves are achieved in the LTOI microdisk at about 500 mW input power. Cascaded third-harmonic generation is also observed in the fabricated device. This work may pave the way for LTOI in integrated photonic chips.

12.
Opt Lett ; 45(15): 4132-4135, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735241

RESUMO

The computer-generated holography technique is a powerful tool for three-dimensional display, beam shaping, optical tweezers, ultrashort pulse laser parallel processing, and optical encryption. We have realized nonlinear holography in ferroelectric crystals by utilizing spatial light modulators in our previous works. Here, we demonstrate an improved method to realize second-harmonic (SH) holographic imaging through a monolithic lithium niobate crystal based on binary computer-generated holograms (CGHs). The CGH patterns were encoded with the detour phase method and fabricated by femtosecond laser micromachining. By the use of the birefringence phase-matching process in the longitudinal direction, bright nonlinear holograms can be obtained in the far-field. The realization of SH holography through monolithic crystal opens wide possibilities in the field of high power laser nonlinear holographic imaging.

13.
Clin Exp Med ; 19(1): 93-104, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30361846

RESUMO

This study analysed the biological significance of TLT-2 on CD8+T cells in hepatitis B patients and provided a theoretical basis for the potential role of TLT-2 as an immune regulator. Flow cytometry sorting, isobaric tags for relative and absolute quantitation and short hairpin RNAs were used to analyse the function of TLT-2 on CD8+T cells in hepatitis B patients. The TLT-2 expression levels in the acute hepatitis B and chronic hepatitis B groups were significantly higher than that in the healthy control group and were positively correlated with ALT and AST. The CD8+TLT-2+T cells exhibited stronger immune function and greater cell proliferation ability and secreted higher levels of cytokines than the CD8+TLT-2-T cells. An analysis of the proteome differences between the TLT-2+CD8+T and TLT-2-CD8+T cells revealed that TLT-2 affected CD8+T cell activation by regulating Granzyme B expression and by further action on the NF-κB signalling pathway. This study first elucidated the mechanism by which TLT-2 influences the activation of CD8+T cells, improved the understanding of the TLT-2 signalling pathway and clarified the role of the TLT-2+CD8+T cell subset in hepatitis B virus infection. The study proposed a novel subset of CD8+T cells that could be useful for understanding the immune function of patients with hepatitis B and further elucidating the pathogenesis of hepatitis B by analysing changes in this subpopulation with the goal of providing a new target for the treatment of hepatitis B.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepatite B/patologia , Ativação Linfocitária , Receptores Imunológicos/análise , Adulto , Idoso , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Linfócitos T CD8-Positivos/química , Proliferação de Células , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise
14.
Int J Clin Exp Pathol ; 8(5): 4418-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191133

RESUMO

The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio.


Assuntos
Biomarcadores Tumorais/análise , Histonas/análise , Leiomioma/diagnóstico , Leiomiossarcoma/diagnóstico , Neoplasias Uterinas/diagnóstico , Adulto , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Índice Mitótico , Fosforilação , Estudos Retrospectivos
15.
Opt Express ; 23(14): 18345-50, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191892

RESUMO

We demonstrated a tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals. The light experiences an anomalous dispersion near the transmission center and a normal dispersion away from the center, where it can be accelerated and slowed down, respectively. We also obtained the switch between fast and slow light by adjusting the external electric filed. The observed largest temporal gap is 541 ps, which is crucial in practical event operation inside the gap. The results offer a new solution for temporal cloak.

16.
Nanotechnol Sci Appl ; 7: 55-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187698

RESUMO

Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications.

17.
Tumour Biol ; 35(4): 3333-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24272204

RESUMO

The tumor suppressor gene Smad4 has been localized to chromosome 18q21.1 and is a member of the Smad family that mediates the transforming growth factor ß signaling pathway suppressing epithelial cell growth. However, variable expression of Smad4 messenger RNA (mRNA) has been reported, with a loss in some cancers and increased expression in others. The aim of the present study was to investigate the Smad4 mRNA expression in prostate cancer tissues and adjacent noncancerous tissues and its potential relevance to clinicopathological variables and prognosis. The expression change of Smad4 mRNA was detected by using real-time quantitative reverse transcriptase-polymerase chain reaction analysis. The data showed that the Smad4 mRNA expression level in prostate cancer tissues was significantly lower than those in noncancerous tissues. The results indicated that the low expression of Smad4 mRNA in prostate cancer was associated with lymph node metastasis, preoperative prostate-specific antigen (PSA), and Gleason score. Kaplan-Meier survival analysis showed that patients with high Smad4 mRNA expression have longer biochemical recurrence-free survival time compared to patients with low Smad4 mRNA expression. Multivariate analysis revealed that Smad4 mRNA expression was an independent predictor of biochemical recurrence-free survival. Our results emphasize that Smad4 mRNA can be used as a predictive biomarker.


Assuntos
Neoplasias da Próstata/genética , RNA Mensageiro/análise , Proteína Smad4/genética , Adulto , Idoso , Biomarcadores Tumorais , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA