RESUMO
Accurate measurement of the infrared spectral emissivity of nickel-based alloys is significant for applications in aerospace. The low thermal conductivity of these alloys limits the accuracy of direct emissivity measurement, especially during the oxidation process. To improve measurement accuracy, a surface temperature correction method based on two thermocouples was proposed to eliminate the effect of thermal conductivity changes on emissivity measurement. By using this method, the infrared spectral emissivity of Inconel 601, Inconel 625, and Inconel 718 alloys was accurately measured during the oxidation process, with a temperature range of 673-873 K, a wavelength range of 3-20 µm, and a zenith angle range of 0-80°. The results show that the emissivity of the three alloys is similar in value and variation law; the emissivity of Inconel 718 is slightly less than that of Inconel 601 and Inconel 625; and the spectral emissivity of the three alloys strongly increases in the first hour, whereafter it grows gradually with the increase in oxidation time. Finally, Inconel 601 has a lower emissivity growth rate, which illustrates that it possesses stronger oxidation resistance and thermal stability. The maximum relative uncertainty of the emissivity measurement of the three alloys does not exceed 2.6%, except for the atmospheric absorption wavebands.
RESUMO
A detailed theoretical investigation on the excited state intramolecular proton transfer (ESIPT) directionality and dynamics behavior of 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with two unsymmetric proton acceptors (N and O2) has been performed. The hydrogen bond O1-H···N in BTHMB-a formed by the O1-H group with the N atom or O1-H···O2 in BTHMB-b formed by the O1-H group with the O2 atom is enhanced upon photoexcitation, and the strength of the O1-H···N bond is stronger, which will drive the O1-H proton to the N atom. Potential energy curves further confirm that ESIPT occurs in the N atom because of the smaller energy barrier (0.39 kcal/mol). Results of dynamics simulations manifest that no surface hopping exists between the S0 and S1 states within 300 fs, and ESIPT time constants of BTHMB-a and BTHMB-b are 48 and 151 fs, respectively. While the reverse ESIPT is observed in BTHMB-b at 294 fs, implying that the O1-H proton is transferred to the N atom instead of the O2 atom. The consistency of the calculated absorption (390 nm) and fluorescence spectra (443 and 602 nm) of BTHMB-a with the experimental values (390, 410, and 605 nm) confirms this conclusion again. The charge distribution analysis shows that the charge on the proton acceptors increases, and the O2 atom has higher electronegativity because it has more negative charges. The minimum surface electrostatic potential on the N atom in BTHMB-b correlating with the pKb value is -47.38 kcal/mol, indicating that the N atom has strong basicity. Therefore, the basicity of the N atom dominates the ESIPT process rather than the electronegativity of the O2 atom.
RESUMO
In metal smelting, precise temperature control is of vital importance for reaction rates, efficiency, and product quality. Traditional methods such as thermocouples have inherent limitations, but multispectral radiation thermometry (MRT) offers high resolution and reliability. This paper proposes a multispectral radiation thermometry platform featuring wireless data transmission, which enables remote data transfer and precise temperature measurements. The platform was meticulously calibrated, and six common emissivity models were inverted with high accuracy. The results of temperature measurements conducted at a copper smelting site demonstrated an excellent degree of agreement with those obtained using disposable thermocouples. The platform has the potential to be applied in harsh environments, offering, to our knowledge, a novel approach to temperature measurement in metal smelting processes.
RESUMO
OBJECTIVE: To evaluate the effects of a multimodal management technique combining surgical muscle wrapping, clipping, and flow-diverter stent (FDS) placement in patients with ruptured blood blister-like aneurysms (BBAs) in the internal carotid artery (ICA). METHODS: In a retrospective case series review from 2020 to 2023, 3 patients with ruptured ICA BBAs underwent multimodal management, an approach combining muscle wrapping, surgical clipping, and FDS embolization. The aneurysm sac was initially packed and wrapped with multiple tailored temporalis muscle grafts and then secured using fenestration clips, with good preservation of the ICA branches. The FDS was placed 2-3 weeks after the clipping. RESULTS: All 3 patients had right ICA BBAs (mean age, 52 years). The modified Hunt and Hess grades ranged from 2 to 3, and the Fisher grades ranged from 3 to 4. The mean angiography follow-up time was 27.7 months (15, 31, and 37 months). There were no instances of symptomatic vasospasm or visible ischemic stroke during follow-up computed tomography. No patient required cerebrospinal fluid shunt implantation, and all achieved favorable neurological outcomes (modified Rankin scale 0-1). Follow-up digital subtraction angiography revealed no evidence of aneurysm recurrence or significant ICA stenosis. CONCLUSIONS: We discuss a promising multimodal management approach for ruptured ICA BBAs combining muscle wrapping, surgical clipping, and FDS embolization. This technique was safe and effective in preventing re-rupture, achieving positive short-term clinical outcomes. Further research and more extensive studies are required to validate the long-term efficacy of this approach.
RESUMO
Background: Angiogenesis plays an important role in the occurrence and development of non-small cell lung cancer (NSCLC). The atypical mitogen-activated protein kinase 4 (MAPK4) has been shown to be involved in the pathogenesis of various diseases. However, the potential role of MAPK4 in the tumor angiogenesis of NSCLC remains unclear. Methods: Adult male C57BL/6 wild-type mice were randomly divided into the control group and p-siMAPK4 intervention group, respectively. The cell proliferation was analyzed with flow cytometry and immunofluorescence staining. The vascular density in tumor mass was analyzed by immunofluorescence staining. The expressions of MAPK4 and related signaling molecules were detected by western blot analysis and immunofluorescence staining, and so on. Results: We found that the expression of MAPK4, which was dominantly expressed in local endothelial cells (ECs), was correlated with tumor angiogenesis of NSCLC. Furthermore, MAPK4 silencing inhibited the proliferation and migration abilities of human umbilical vein ECs (HUVECs). Global gene analysis showed that MAPK4 silencing altered the expression of multiple genes related to cell cycle and angiogenesis pathways, and that MAPK4 silencing increased transduction of the extracellular regulated protein kinases 1/2 (ERK1/2) pathway but not Akt and c-Jun n-terminal kinase pathways. Further analysis showed that MAPK4 silencing inhibited the proliferation and migration abilities of HUVECs cultured in tumor cell supernatant, which was accompanied with increased transduction of the ERK1/2 pathway. Clinical data analysis suggested that the higher expression of MAPK4 and CD34 were associated with poor prognosis of patients with NSCLC. Targeted silencing of MAPK4 in ECs using small interfering RNA driven by the CD34 promoter effectively inhibited tumor angiogenesis and growth of NSCLC in vivo. Conclusion: Our results reveal that MAPK4 plays an important role in the angiogenesis and development of NSCLC. MAPK4 may thus represent a new target for NSCLC.
RESUMO
Optical resonators made of 2D photonic crystal (PhC) slabs provide efficient ways to manipulate light at the nanoscale through small group-velocity modes with low radiation losses. The resonant modes in periodic photonic lattices are predominantly limited by nonleaky guided modes at the boundary of the Brillouin zone below the light cone. Here, we propose a mechanism for ultra-high Q resonators based on the bound states in the continuum (BICs) above the light cone that have zero-group velocity (ZGV) at an arbitrary Bloch wavevector. By means of the mode expansion method, the construction and evolution of avoided crossings and Friedrich-Wintgen BICs are theoretically investigated at the same time. By tuning geometric parameters of the PhC slab, the coalescence of eigenfrequencies for a pair of BIC and ZGV modes is achieved, indicating that the waveguide modes are confined longitudinally by small group-velocity propagation and transversely by BICs. Using this mechanism, we engineer ultra-high Q nanoscale resonators that can significantly suppress the radiative losses, despite the operating frequencies above the light cone and the momenta at the generic k point. Our work suggests that the designed devices possess potential applications in low-threshold lasers and enhanced nonlinear effects.
RESUMO
Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.
Assuntos
Queijo , Proteínas do Soro do Leite , Queijo/microbiologia , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Nisina/farmacologia , Nisina/química , Microbiologia de Alimentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Filmes Comestíveis , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas do Leite/farmacologia , Proteínas do Leite/químicaRESUMO
OBJECTIVE: Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS: In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS: Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION: The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Assuntos
Doenças do Cão , Equinococose , Echinococcus , Fezes , Microbioma Gastrointestinal , Animais , Cães , Equinococose/veterinária , Doenças do Cão/parasitologia , Doenças do Cão/microbiologia , Doenças do Cão/virologia , China , Fezes/parasitologia , Fezes/microbiologia , Fezes/virologia , Echinococcus/genética , Echinococcus/isolamento & purificação , Genoma Viral , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genéticaRESUMO
Neurotrophin receptor B (NTRK2), also named TRKB, belongs to the neurotrophic factor family. Previous studies have shown that NTRK2 is associated with high fertility in mammals. However, the molecular mechanism and regulatory pathway of this neurotrophic factor remain unclear. In this study, NTRK2 overexpression and NTRK2-siRNA were constructed to detect the effects of NTRK2 on the proliferation and hormone secretion of the ovarian granulosa cells (GCs) of sheep. We successfully isolated follicular phase granulosa cells in vitro from the ovaries of sheep in simultaneous estrus, and the immunofluorescence results confirmed that NTRK2 was expressed in the collected cells. Subsequently, the effect of NTRK2 on the proliferation of sheep granulosa cells was examined via cell transfection experiments. The results showed that the expression of CDK4 and CyclinD2 was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). The EdU and CCK-8 assays showed that the proliferation rate of sheep GCs was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Moreover, NTRK2 significantly increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase (HSD3B1), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The ELISA results showed that the secretion levels of E2 and P4 significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Previous studies had confirmed that NTRK2 gene belongs to the PI3K-AKT signaling pathway and participates in the signaling of this pathway. This was demonstrated by protein-protein interaction analysis and NTRK2 belongs to the PI3K-AKT pathway. The modification of PI3K and AKT, markers of the PI3K-AKT pathway, via phosphorylation was increased after NTRK2 overexpression in the sheep GCs, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Overall, these results suggest that the NTRK2 gene regulates the proliferation of GCs and the secretion of steroid hormones in sheep, and that it influences the phosphorylation level of the PI3K/AKT signaling pathway. These findings provided a theoretical basis and new perspectives for exploring the regulation of NTRK2 gene in the development of ovine follicles.
RESUMO
AIMS: To explore the correlation between visceral adipose tissue and albuminuria, and whether there is interaction between visceral adipose tissue and diabetes on albuminuria. METHODS: The study subjects were adult subjects (age ≥ 18 years) from the National Health and Nutrition Examination Surveys (NHANES) database of the USA in 2017-2018. Visceral fat area (VFA) was measured by dual-energy X-ray absorptiometry (DXA). Subjects were divided into three groups according to VFA: low (VFA 0-60cm2), medium (VFA 60-120 cm2) and high (VFA ≥ 120 cm2). Albuminuria was defined as urinary albumin-to-creatinine ratio (UACR) ≥ 30 mg/g. The statistical analysis software used is STATA 17.0. RESULTS: Data pertaining to 2965 participants (2706 without albuminuria) were included in the analysis. High VFA is an independent risk factor for albuminuria (OR 1.367, 95% CI 1.023-1.827). In the low-VFA group, there is no significant association between diabetes and albuminuria (OR 1.415, 95% CI 0.145-13.849). In the medium-VFA group, diabetes is an independent risk factor for albuminuria (OR 2.217, 95% CI 1.095-4.488). In the high-VFA group, diabetes is also an independent risk factor for albuminuria (OR 5.150, 95% CI 3.150-8.421). There is an additive interaction between high VFA (VFA ≥ 120 cm2) and diabetes on the effect of albuminuria (RERI 3.757, 95% CI 0.927-6.587, p = 0.009), while no multiplication interaction (OR 1.881, 95% CI 0.997-1.023, p = 0.141). CONCLUSIONS: High VFA may represent an independent risk factor for albuminuria. The amount of visceral fat may affect the effect of diabetes on albuminuria. The higher the visceral fat, the stronger the correlation between diabetes and albuminuria should be present. We suppose an additive interaction between VFA and diabetes on the effect of albuminuria.
Assuntos
Albuminúria , Diabetes Mellitus , Gordura Intra-Abdominal , Humanos , Albuminúria/epidemiologia , Albuminúria/etiologia , Masculino , Feminino , Gordura Intra-Abdominal/fisiopatologia , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/fisiopatologia , Inquéritos Nutricionais , Adiposidade , Estudos Transversais , Idoso , Absorciometria de FótonRESUMO
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.
Assuntos
Apoptose , Imunidade Inata , Fator Regulador 3 de Interferon , Interferons , Proteínas não Estruturais Virais , Animais , Suínos , Humanos , Interferons/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Interferon lambda , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Alphacoronavirus/metabolismo , Caspase 3/metabolismo , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Células Vero , Transdução de Sinais , Chlorocebus aethiops , Células HEK293RESUMO
To concurrently determine the thermophysical parameters of semi-transparent materials, a novel, to the best of our knowledge, integrated approach for concurrent measurement is proposed. In the measurement setup, a high-temperature radiation source and a beam reducer are employed to minimize the influence of background radiation. In order to differentiate between the transmitted and emitted radiation in the detection signal, the radiation signals from the radiation source are measured under four different conditions, enabling the calculation of transmissivity, emissivity, and reflectivity. The reliability and accuracy of the measurement method are validated by the thermophysical parameters of sapphire, and the results demonstrate a strong agreement between the measured data and previous findings. The combined uncertainties of transmissivity and emissivity for the sapphire at 753â K are estimated, highlighting the novel contribution of this method in investigating the thermophysical parameters of semi-transparent materials.
RESUMO
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.
Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Animais , Suínos , Complexo de Endopeptidases do Proteassoma , Interferon lambda , Alphacoronavirus/fisiologia , Ubiquitinas , Infecções por Coronavirus/veterináriaRESUMO
Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.
Assuntos
Análise de Célula Única , Análise por Conglomerados , Análise de Célula Única/métodos , Biologia Computacional/métodos , Humanos , AlgoritmosRESUMO
Long noncoding RNAs (lncRNAs), as competitive endogenous RNAs (ceRNAs), can directly or indirectly affect the proliferation and apoptosis of granulosa cells by regulating microRNA (miRNA) pathways. A ceRNA network of the SLC19A1-AS-miR-1343-WNT11 axis was constructed via comprehensive transcriptome sequencing of ovaries from goats with various fertility levels to further elucidate the function and regulatory mechanism of SLC19A1-AS in modulating miR-1343 and WNT11 during granulosa cell proliferation and apoptosis. Subsequent validation experiments were conducted in vitro using granulosa cells. In these experiments, we performed RNA immunoprecipitation (RIP) and identified SLC19A1-AS as a ceRNA in goat granulosa cells that promoted proliferation. Through bioinformatics prediction, luciferase reporter gene assays, and RNA pulldown assays, we confirmed that SLC19A1-AS acts as a sponge for miR-1343, preventing its binding to WNT11 mRNA and thereby increasing the expression of WNT11. This interaction also influenced the proliferation and apoptosis of granulosa cells. Our study systematically validated the biological function of the lncRNA-miRNA-mRNA ceRNA network in goat ovaries and revealed the potential regulatory mechanism by which SLC19A1-AS functions as a ceRNA in granulosa cells. These findings are expected to provide an important experimental foundation for further elucidating the physiological regulatory network of the ovary and contributing to reproductive health in goats.
Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Feminino , RNA Endógeno Competitivo , Cabras/genética , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Redes Reguladoras de GenesRESUMO
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , MultiômicaRESUMO
BACKGROUND: Meckel's diverticulum is a common congenital malformation of the small intestine, with the three most common complications being obstruction, perforation, and inflammation. To date, only a few cases have been reported worldwide. In children, the clinical symptoms are similar to appendicitis. As most of the imaging features are nonspecific, the preoperative diagnosis is not precise. In addition, the clinical characteristics are highly similar to pediatric acute appendicitis, thus special attention is necessary to distinguish Meckel's diverticulum from pediatric appendicitis. Patients with poor disease control should undergo laparoscopic exploration to avoid serious complications, including intestinal necrosis, intestinal perforation and gastrointestinal bleeding. CASE SUMMARY: This report presents three cases of appendicitis in children combined with intestinal obstruction, which was caused by fibrous bands (ligaments) arising from the top part of Meckel's diverticulum, diverticular perforation, and diverticular inflammation. All three patients, aged 11-12 years, had acute appendicitis as their initial clinical presentation. All were treated by laparoscopic surgery with a favorable outcome. A complete dataset including clinical presentation, diagnostic imaging, surgical information, and histopathologic findings was also provided. CONCLUSION: Preoperative diagnosis of Meckel's diverticulum and its complications is challenging because its clinical signs and complications are similar to those of appendicitis in children. Laparoscopy combined with laparotomy is useful for diagnosis and treatment.
RESUMO
Lysophosphatidic acid receptor-2 (LPAR2) is a G protein-coupled receptor, which is involved in various physiological processes such as cell development, proliferation, and apoptosis, and is thought to play an important role in follicular development and reproduction. There is evidence that miRNA recognition elements (MRE) in the gene 3'UTR often contain single nucleotide polymorphisms (SNPs) that can alter the binding affinity of the target miRNA, leading to dysregulation of gene expression. In this study, we detected a SNP in LPAR2 3 'UTR (rs410670692, c.*701C > T) in 384 small-tailed Han sheep using Sequenom MassARRAY®SNP genotyping. Association analysis showed that the SNP was significantly associated with litter size. Then, the effect of LPAR2 rs410670692 mutation on gene expression in sheep hosts was studied by molecular biotechnology. The results showed that the expression of LPAR2 in the TT genotype was significantly higher than that in the CC genotype, which confirmed the existence of rs410670692, a functional SNP, in LPAR2 3'UTR. We then used bioinformatics methods and double luciferase reporter gene assay to predict and confirm LPAR2 SNP rs410670692 as the direct targeting regulatory element of miR-939-5p. Cell transfection experiments further found that SNP rs410670692 down-regulated the mRNA and protein levels of LPAR2 by influencing the binding of miR-939-5p. To understand the function and mechanism of miR-939-5p in sheep granulosa cells (GCs), we conducted cell proliferation and apoptosis experiments which showed inhibited GCs proliferation along with promoted GCs apoptosis upon overexpression of miR-939-5p. Moreover, overexpression of miR-939-5p promotes apoptosis of granulosa cells by blocking the LPAR2-dependent PI3K/Akt signaling pathway. In conclusion, these results indicate that the SNP rs410670692 of LPAR2 is related to the litter size of small-tailed cold sheep, and miR-939-5p can act as a regulatory element binding to the C mutation of rs410670692 to regulate the expression of LPAR2, affect the development of GCs, and thus indirectly affect the litter size of sheep. These studies provide evidence for the involvement of LPAR2 polymorphism in sheep reproduction and are expected to provide new insights into the molecular genetic mechanisms of litter size traits in sheep.
Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Feminino , Ovinos/genética , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões 3' não Traduzidas , MicroRNAs/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Proliferação de Células/genética , MutaçãoRESUMO
This study presents a fast and accurate data processing method for multispectral radiation thermometry that can accurately measure the true temperature of steel materials without requiring a priori emissivity model. The method generates a temperature matrix by inputting emissivity values at different wavelengths and selects a reference vector from the matrix. Then, it rearranges the temperature matrices at other wavelengths and calculates the Euclidean distance between each column element of the rearranged matrix and the reference vector. The method uses an unconstrained optimization technique to minimize the Euclidean distance and obtain the true temperature and emissivity of the object simultaneously. We evaluate the performance of the method by simulation and experiment in the response band of 1.4 â¼ 2.5â µm and temperature range of 873 â¼ 1173 K. The simulation results indicate that the relative error of the inverted temperature is within 0.229%, and the average computation time is less than 112.301 ms. The experimental results show that the maximum temperature error during the measurement process is 0.813%. Our method provides a feasible and efficient solution for real-time temperature measurement of steel materials.