Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Food Chem ; 429: 136919, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494754

RESUMO

A functional bipolar electrode-electrochemiluminescence (BPE-ECL) platform based on biocathode reducing oxygen was constructed for detecting electrochemically active bacteria (EAB) in this paper. Firstly, thiolated trimethylated chitosan quaternary ammonium salt (TMC-SH) layer was assembled on the gold-plated cathode of BPE. TMC-SH contains quaternary ammonium salt branch chain, which can inhibit the growth of microorganisms on the surface or in the surrounding environment while absorbing bacteria. Then, the peristaltic pump was used to flow all of the samples through the cathode, and the EAB was electrostatically adsorbed on the electrode surface. Finally, applying a constant potential to the BPE, bacteria can catalyze electrochemical reduction of O2, and decrease the overpotential of O2 reduction at the cathode, which in turn generates an ECL reporting intensity change at the anode. In this way, live and dead bacteria can be distinguished, and the influence of complex food substrates on detection can be greatly reduced.


Assuntos
Compostos de Amônio , Técnicas Biossensoriais , Medições Luminescentes , Técnicas Eletroquímicas , Eletrodos
2.
Biosens Bioelectron ; 237: 115452, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311408

RESUMO

Color-switch electrochemiluminescence (ECL) sensing platform based on a dual-bipolar electrode (D-BPE) is reported in this work. The D-BPE was composed of a cathode filled with buffer and two anodes filled with [Ru(bpy)3]2+-TPrA and luminol-H2O2 solutions, respectively. Both anodes were modified with capture DNA and served as ECL reporting platforms. After introducing ferrocene-labeled aptamer (Fc-aptamer) on both anodes, the ECL emission signal of the [Ru(bpy)3]2+ was difficult to be observed (anode 1), while luminol emitted a strong and visible ECL signal (anode 2). Ferrocene (Fc) did not only prevent the oxidation of [Ru(bpy)3]2+ due to its lower oxidation potential, its oxidation product Fc+ also quenched the [Ru(bpy)3]2+ ECL through efficient energy transfer. For luminol, Fc+ catalyzes the accelerated formation of the excited-state of the luminol anion radical, which leads to the enhancement of the luminol ECL. In the presence of food-borne pathogens, the aptamer was assembled with them, leading to the leaving of Fc from the surface of the D-BPE anodes. The ECL intensity of [Ru(bpy)3]2+ was enlarged, meanwhile, the blue emission signal of luminol became weakened. By self-calibrating the ratio of the two signals, 1-106 CFU mL-1 food-borne pathogenic bacteria can be sensitively detected with a detection limit of 1 CFU mL-1. Ingeniously, the color-switch biosensor can be used to detect S. aureus, E. coli and S. typhimurium by assembling the corresponding aptamers onto the D-BPE anodes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Metalocenos , Medições Luminescentes , Escherichia coli , Peróxido de Hidrogênio , Luminol , Staphylococcus aureus , Eletrodos , Técnicas Eletroquímicas
3.
Biosens Bioelectron ; 221: 114940, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436467

RESUMO

After discovery of electron transfer from bacteria, most bacteria known to be electrochemically active are utilized as a self-regenerable catalyst at the anode of microbial fuel cells (MFCs). However, the reverse phenomenon, cathodic catalysts is not so widely researched. This present study demonstrated that E. coli O157:H7 was electrochemically active, and it was able to catalyze oxygen reduction at the cathode of bipolar electrode (BPE). Applying a constant potential to the BPE, E. coli O157:H7 can catalyze electrochemical reduction of O2, decrease the overpotential of O2 reduction at the cathode, which in turn generates an electrochemiluminescence (ECL) reporting intensity change at the anode. Significantly, a majority of food matrix does not exhibit catalytic activity for electrochemical reduction of O2. Meanwhile, due to the physically separation of two poles of closed BPE, complex food matrix at the cathode does not interfere with the ECL reaction at the anode. Therefore, the effect of food matrix is negligible when measuring E. coli O157:H7 levels in food. A low detection limit of 10 CFU mL-1 E. coli O157:H7 could be identified within 1 h. Thus, biocathodes reducing oxygen in BPE-ECL system has shown excellent characteristics in the field of rapid detection of electroactive bacteria in food.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Oxigênio , Eletrodos , Pesquisa
4.
Chirality ; 34(9): 1219-1227, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686646

RESUMO

An electrochemical biosensor for staphylococcal enterotoxin B (SEB) detection has been designed on the basis of electrochemical interrogation of conformational changes. Ferrocene-labeled hairpin probe (Fc-HP) and SEB aptamer are introduced for the construction of the platform. Without SEB, the rigid construction of DNA duplex that included SEB aptamer and Fc-HP prevented Fc getting access to the electrode surface, keeping the "eT-off" state in the detection system. In the presence of SEB, the interaction between SEB and the aptamer could trigger the disruption of DNA duplex and the restoration of hairpin structure, accompanied by the increase of Fc oxidation current. The decreasing distance between the redox probe and electrode upon the nucleic acid reconfiguration substantially increased the efficiency of eT, which resulted in the enhanced Fc signal. The proposed strategy presented a wide linear detection range from 0.005 to 100 ng mL-1 with a detection limit down to 3 pg mL-1 (S/N = 3). To investigate the applicability and reliability of the method in real food samples such as milk samples, we compared the results between this method and the commercial ELISA kit. The relative percentage error between the two assays ranged from -6.42% to 6.31%, indicating that there was no obvious difference between the results.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Enterotoxinas , Ouro/química , Reprodutibilidade dos Testes , Estereoisomerismo
5.
Food Chem ; 383: 132404, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35168048

RESUMO

An Ag@C hybrid bipolar electrode (BPE) sensing platform has been established for the temporal detection of Staphylococcus aureus (S. aureus) in food. Combining the advantages of anodic dissolution of Ag and cathodic biocatalysis of oxygen (O2) reduction, this strategy showed an ultralow detection limit down to 10 CFU mL-1. As the formation of Ag@C completely quenched the electrochemiluminescence (ECL) emission of luminol, the ECL emission recovery reflected the extent of anodic dissolution. Meanwhile, S. aureus catalyzed the electrochemical reduction of O2 at the cathode, reducing the overpotential for cathodic O2 reduction and thus increasing the rate of anodic electron loss, facilitating Ag dissolution and restoring the ECL emission of luminol. When a constant potential was applied, through monitoring the ECL recovery time before and after the incubation of S. aureus on the cathode, S. aureus could be quantified due to the slight difference of the conductivity.


Assuntos
Técnicas Biossensoriais , Luminol , Biocatálise , Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes , Oxigênio , Solubilidade , Staphylococcus aureus
6.
Anal Chim Acta ; 1141: 83-90, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248665

RESUMO

False positives are common and frequently occurring in detection of ochratoxin A (OTA) due to the complexity of the food matrix. In this paper, a novel bipolar electrode-electrochemiluminescence (BPE-ECL) sensing platform for sensitive OTA detection with one-step grain pretreatment was proposed. The biosensor uses cathode of closed BPE as a functional sensing interface and anode as a signal collection interface. On the functional sensing interface, the horseradish peroxidase (HRP) catalyze the polymerization of aniline to form polyaniline (PANI) on nucleic acid backbone which is supplied by DNA tetrahedron-structured aptamer (DTA) and hybrid chain reaction (HCR). In the presence of OTA, PANI is formed and can cause the change of ECL and luminescence voltage of the anode of BPE. On the signal collection interface, the Ru(bpy)32+/TPA system is used as ECL light output. In this way, the analyte does not need to participate the ECL reaction of the anode, which avoids direct contact of photoactive molecules with complex reaction systems and greatly reduce the influence of complex food matrix on signal acquisition. The accuracy of the BPE-ECL biosensor (one-step grain pretreatment) was similar with high performance liquid chromatography (HPLC) analysis (traditional national standard pretreatment method: GB5009.96-2016). Meanwhile, the BPE-ECL biosensor had higher sensitivity (LOD: 3 pg mL-1). Therefore, closed BPE could simplify sample pretreatment and improve detection capability.


Assuntos
Técnicas Biossensoriais , Ocratoxinas , Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes
7.
Food Chem ; 331: 127368, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32569962

RESUMO

A novel strategy for AFB1 detection in grains was proposed based on DNA tetrahedron-structured probe (DTP) and horseradish peroxidase (HRP) triggered polyaniline (PANI) deposition. Briefly, the DNA tetrahedron nanostructures were assembled on the gold electrode, with carboxylic group designed on top vertex of them. The carboxylic group was conjugated with the AFB1 monoclonal antibody (mAb) to form DTP. The test sample and a known fixed concentration of HRP-labeled AFB1 were mixed and they compete for binding to DTP. The HRP assembled on the gold electrode catalyzed the polymerization of aniline on DTP. AFB1 in grains could be determined by using PANI as electrochemical signal molecules. Interestingly, DNA tetrahedron-structure, which has mechanical rigidity and structural stability, can improve antigen-antibody specific recognition and binding efficiency through the use of mAb ordered assembly. Meanwhile, nucleic acid backbone with a large amount of negative charge is good template for aniline polymerization under mild conditions.


Assuntos
Aflatoxina B1/análise , Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Nanoestruturas/química , Aflatoxina B1/imunologia , Anticorpos Monoclonais/química , DNA/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Peroxidase do Rábano Silvestre/química , Polimerização , Sensibilidade e Especificidade
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118277, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32217455

RESUMO

Two novel rhodamine-polystyrene solid-phase fluorescence sensors PS-RB-2 and PS-R6G-2 with pyrene or naphthalene as fluorophore were synthesized for Hg(II) detection. Their structures were characterized by Fourier transform infrared (FTIR) spectra and scanning electron micrographs (SEM). Sensor PS-RB-2 displayed higher selectivity and sensitivity to Hg(II), with a lower detection limit of 0.065 µM. A detection mechanism involving the Hg(II) chelation-induced spirocycle open of rhodamine was proposed and discussed from theoretic level based on crystal structures and density functional theory (DFT) calculations. Sensor PS-RB-2 with recyclable and environment-friendly performance was successfully employed to fluorescent detection of Hg(II) in real water and fish samples, indicating its good potential in practical application. Its solid phase extraction columns were developed for rapid detection of Hg(II) by observing the color change with the naked eyes.

9.
Sci Rep ; 10(1): 2052, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029865

RESUMO

In order to find fraudulent species substitution in meat products, a highly sensitive and rapid assay for meat species identification and quantification is urgently needed. In this study, species-specific primers and probes were designed from the mitochondrial cytb (cytochrome b) fragment for identification and quantification of bovine ingredient in commercial meat products. Bovine samples and non-bovine ones were used to identify the specificity, sensitivity, and applicability of established assay. Results showed that the primers and probes were highly specific for bovine ingredient in meat products. The absolute detection limit of the real-time PCR method was 0.025 ng DNA, and the relative detection limit was 0.002% (w/w) of positive samples. The quantitative real-time PCR assay was validated on simulated meat samples and high in the precision and accuracy. In order to demonstrate the applicability and reliability of the proposed assay in practical products, the 22 commercial meat products including salted, jerkies, and meatball were used. The results indicated the established method has a good stability in detection of bovine ingredient in real food. The established method in this study showed specificity and sensitivity in identification and quantification of beef meat in processed meat products.


Assuntos
Bovinos/genética , DNA/isolamento & purificação , Contaminação de Alimentos/análise , Produtos da Carne/análise , Reação em Cadeia da Polimerase em Tempo Real , Animais , Citocromos b/genética , DNA/genética , Contaminação de Alimentos/prevenção & controle , Limite de Detecção , Produtos da Carne/normas , Reprodutibilidade dos Testes , Especificidade da Espécie
10.
Talanta ; 210: 120677, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987188

RESUMO

The level of miRNA-21, miRNA-122, and miRNA-223 are always elevated when liver cancer is present at an early stage. In this paper, a novel assay to simultaneous detect miRNA-21, miRNA-122, and miRNA-223 was proposed based on DNA tetrahedron nanotags and fluorescence resonance energy transfer (FRET), which used a single laser stimulate wavelengh from one nucleic acid stain TOTO-1 to three diverse organic dyes (Cy3, Cy3.5, Cy5). In brief, a DNA tetrahedral nanostructure (DTN) was designed with three adaptor oligos on its vertices. TOTO-1, as a fluorescent donor, can imbed into native nucleic acid backbone of DTN. Three organic dye-functionalized strands (FRET oligos) are fluorescent receptors. In the presence of target miRNAs, they can be hybridized with FRET oligos and adaptor oligos on the vertices of DTN and the stable DNA tetrahedron nanotags are formed. As a result, the confinement of TOTO-1 is in close proximity to three fluorescence dyes, the FRET between TOTO-1 and three fluorescence dyes is generate efficiently in DNA tetrahedron nanotags. Point-of-care clinical applicability is demonstrated by sensitive multiplexed quantification of three miRNAs in 10% human serum samples.


Assuntos
DNA de Neoplasias/química , Transferência Ressonante de Energia de Fluorescência , Neoplasias Hepáticas/química , MicroRNAs/sangue , Nanopartículas/química , Carbocianinas/química , Corantes/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem
11.
Biosens Bioelectron ; 150: 111873, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31748193

RESUMO

In order to avoid the occurrence of false positives and false negatives caused by improper pretreatment during the detection of aflatoxin B1 by enzyme linked immunosorbent assay (ELISA). In this paper, we developed a screen printed bipolar electrode (BPE) for sensitive electrochemiluminescence (ECL) detection of aflatoxin B1 in agricultural products. The sensor uses a cathode of closed BPE as a functional sensing interface and an anode as a signal collection interface. In this way, the analyte does not need to participate in the ECL reaction of the anode. It avoids direct contact of photoactive molecules with complex reaction systems and greatly broadens the range of applications for ECL. After mixing the test sample with a known fixed concentration of horseradish peroxidase-labeled AFB1 (HRP-AFB1), they compete for binding to monoclonal antibodies. HRP catalyzes the polymerization of aniline to form polyaniline (PANI). Thereby causing a change in the oxidation-reduction potential and the ECL intensity in the electrochemical system, and then achieve the purpose of detecting the AFB1 concentration in the sample. As a result, the sensor has a good analytical performance for AFB1 with a linear range of 0.1-100 ng mL-1 and a detection limit of 0.033 ng mL-1. The sensor avoids the direct contact between the reaction system and the signal measurement system. In recovery experiment for six grains, the results demonstrate that the recovery rate and accuracy of this sensor is better than that of ELISA. This method provides a new idea for the detection of other mycotoxins in grains.


Assuntos
Aflatoxina B1/isolamento & purificação , Técnicas Biossensoriais , Técnicas Eletroquímicas , Aflatoxina B1/química , Produtos Agrícolas/química , Eletrodos , Medições Luminescentes
12.
Mikrochim Acta ; 186(2): 109, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30637509

RESUMO

A rapid and ultrasensitive method is described for the detection of staphylococcal enterotoxin B (SEB). It is based on the formation of a dendritic DNA superstructure by integrating (a) target-induced triggering of DNA release with (b) signal amplification by a hybridization chain reaction. Partially complementary pairing of aptamer and trigger DNA forms a duplex structure. The capture DNA is then placed on the surface of a gold electrode through gold-thiol chemistry. In the presence of SEB, the aptamer-target conjugate is compelled to form. This causes the release of trigger DNA owing to a strong competition with SEB. The trigger DNA is subsequently hybridized with the partial complementary sequences of the capture DNA to trigger HCR with three auxiliary DNA sequances (referred to as H1, H2, H3). Finally, the dendritic DNA superstructure is bound to hexaammineruthenium(III) cation by electrostatic adsorption and assembled onto the modified gold electrode. This produces an amplified electrochemical signal that is measured by chronocoulometry. Under optimal conditions, the charge difference increases linearly with the logarithm of the SEB concentrations in the range from 5 pg·mL-1 to 100 ng·mL-1 with a detection limit as low as 3 pg·mL-1 (at S/N = 3). Graphical abstract An electrochemical switching strategy is presented for the sensitive detection of Staphylococcus enterotoxin B based on target-triggered assembly of dendritic nucleic acid nanostructures.


Assuntos
Aptâmeros de Nucleotídeos/química , Colorimetria/instrumentação , DNA/química , Enterotoxinas/análise , Ouro/química , Nanoestruturas/química , Adsorção , Animais , Cor , Eletrodos , Limite de Detecção , Leite/química , Modelos Moleculares , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Compostos de Rutênio/química , Compostos de Sulfidrila/química
13.
RSC Adv ; 9(72): 42423-42429, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542854

RESUMO

A rapid and ultrasensitive method is described for the detection of Staphylococcal enterotoxin B (SEB). It is based on the formation of the flower like nucleic acid nanostructure by integrating (a) target-induced triggering of DNA release with (b) signal amplification by a hybridization chain reaction (HCR). Firstly, partially complementary pairing of aptamer and trigger DNA forms a duplex structure. The capture DNA (cpDNA) is then placed on the surface of gold electrode through gold-thiol chemistry. In the presence of SEB, the aptamer-target conjugate is compelled to form. This causes the release of trigger DNA owing to a strong competition between aptamer and SEB. Then, the trigger DNA is subsequently hybridized with the partial complementary sequences of the cpDNA to trigger HCR with three auxiliary DNA sequences (referred to as MB1, MB2, MB3). Finally, the flower like nucleic acid nanostructures are formed and allow numerous hexaammineruthenium(iii) chloride ([Ru(NH3)6]3+, RuHex) to be absorbed on the DNA by electrostatic interaction, and thus amplify electrochemical signal. Under optimal conditions, the chronocoulometry charge difference increases linearly with the logarithm of the SEB concentrations in the range from 5 pg mL-1 to 100 ng mL-1 with a detection limit as low as 3 pg mL-1 (S/N = 3).

14.
Mikrochim Acta ; 185(10): 460, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219956

RESUMO

An electrochemical switching strategy is presented for the sensitive determination of Staphylococcus enterotoxin B (SEB). It is based on the use of DNA triangular pyramid frustum nanostructure (TPFDNA) consisting of (a) three thiolated probes, (b) one auxiliary probe, and (c) an aptamer against SEB. The TPFDNA was assembled on the gold electrode, with the SEB aptamer designed on top of the TPFDNA. The electron transfer to hexacyanoferrate acting as an electrochemical probe is strongly inhibited in the TPFDNA-modified electrode. This is assumed to be due to the formation of a 3D TPFDNA structure that limits access of hexacyanoferrate to the electrode. Therefore, the Faradaic impedance is large. However, in the presence of SEB, it will bind to the aptamer and dehybridize the hybrid formed between aptamer and its complementary sequence. As a result, the TPFDNA nanostructure changes to an equilateral triangle DNA nanostructure. This results in a more efficient electron transfer and a smaller Faradaic impedance. The method has a detection limit of 0.17 ng mL-1 of SEB (at an S/N of 3) and a dynamic range that covers the 0.2-1000 ng mL-1 concentration range. The applicability and reliability of the method was demonstrated by anayzing (spiked) milk samples, and the results were compared to those obtained with an ELISA kit. The relative standard deviations between the two methods range between -6.59 and 9.33%. Graphical abstract An electrochemical switching strategy is presented for the sensitive detection of Staphylococcus enterotoxin B based on 3D DNA structure conversion of nanostructure from triangular pyramid frustum to equilateral triangle.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , Eletroquímica/métodos , Enterotoxinas/análise , Nanoestruturas/química , Conformação de Ácido Nucleico , Animais , Sequência de Bases , Impedância Elétrica , Eletrodos , Transporte de Elétrons , Enterotoxinas/química , Ouro/química , Leite/química
15.
Talanta ; 180: 127-132, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332790

RESUMO

Recent findings have thrust poly ADP (ADP: adenosine diphosphate)-ribose polymerase-1 (PARP-1) into the limelight as potential chemotherapeutic target because it is closely related to the development of tumor. So, studies on its detection and inhibitors evaluation have attracted more attention. It is interesting that poly (ADP-ribose) (PAR), the catalytic product of PARP-1 in the existence of nicotinamide adenine dinucleotide (NAD+), possess twice charge density of DNA strands. PAR contain 200 units, i.e., about 400bp bases, and multiple branched strands. So, plentiful negative charges on PAR supplied exquisite environment for PANI deposition, which was triggered by horseradish peroxidase (HRP). Because of the unique electrochemical property of PANI, ultrasensitive electrochemical detection of PARP-1 was proposed. Under optimum conditions, DPV intensity linearly increased with the increment of PARP-1 in the range of 0.005-1.0 U. The detection limit was 0.002 U, which was comparable or more sensitive than that obtained from previously reported strategies.


Assuntos
Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Ensaios Enzimáticos/métodos , Poli(ADP-Ribose) Polimerase-1/análise , Poli Adenosina Difosfato Ribose/química , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/sangue
16.
Anal Chem ; 89(22): 12094-12100, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29061046

RESUMO

Early diagnosis and life-long surveillance are clinically important to improve the long-term survival of cancer patients. Telomerase activity is a valuable biomarker for cancer diagnosis, but its measurement often used complex label procedures. Herein, we designed a novel, simple, visual and label-free method for telomerase detection by using enzymatic etching of gold nanorods (GNRs). First, repeating (TTAGGG)x sequences were extented on telomerase substrate (TS) primer. It formed G-quadruplex under the help of Hemin and K+. Second, the obtained horseradish peroxidase mimicking hemin/G-quadruplex catalyzed the H2O2-mediated etching of GNRs to the short GNRs, even to gold nanoparticles (GNPs), generating a series of distinct color changes due to their plasmon-related optical response. Thus, this enzymatic reaction can be easily coupled to telomerase activity, allowing for the detection of telomerase activity based on vivid colors. This can be differentiated sensitively by naked eyes because human eyes are more sensitive to color variations rather than the optical density variations. As a result, telomerase activity can be quantitatively detected ranging from 200 to 15000 HeLa cells mL-1. The detection limit was 90 HeLa cells mL-1 (S/N = 3). Importantly, the application of this method in bladder cancer samples was in agreement with the clinical results. Thus, this method was considerably suitable for point-of-care diagnostics in resource-constrained regions because of the easy readout of results without the use of sophisticated apparatus.


Assuntos
Ouro/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Nanotubos/química , Imagem Óptica , Telomerase/metabolismo , Biocatálise , Quadruplex G , Ouro/química , Células HeLa , Hemina/química , Hemina/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Potássio/química , Potássio/metabolismo , Telomerase/análise
17.
Anal Chem ; 89(13): 7262-7268, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28561584

RESUMO

The label-free localized surface plasmon resonance (LSPR) detection technique has been identified as a powerful means for in situ investigation of biological processes and localized chemical reactions at single particle level with high spatial and temporal resolution. Herein, a core-satellites assembled nanostructure of Au50@Au13 was designed for in situ detection and intracellular imaging of telomerase activity by combining plasmonic resonance Rayleigh scattering spectroscopy with dark-field microscope (DFM). The Au50@Au13 was fabricated by using 50 nm gold nanoparticles (Au50) as core and 13 nm gold nanoparticles (Au13) as satellites, both of them were functionalized with single chain DNA and gathered proximity through the highly specific DNA hybridization with a nicked hairpin DNA (O1) containing a telomerase substrate (TS) primer as linker. In the presence of telomerase, the telomeric repeated sequence of (TTAGGG)n extended at the 3'-end of O1 would hybridized with its complementary sequences at 5'-ends. This led the telomerase extension product of O1 be folded to form a rigid hairpin structure. As a result, the Au50@Au13 was disassembled with the releasing of O1 and Au13-S from Au50-L, which dramatically decreased the plasmon coupling effect. The remarkable LSPR spectral shift was observed accompanied by a detectable color change from orange to green with the increase of telomerase activity at single particle level with a detection limit of 1.3 × 10-13 IU. The ability of Au50@Au13 for in situ imaging intracellular telomerase activity, distinguishing cancer cells from normal cells, in situ monitoring the variation of cellular telomerase activity after treated with drugs were also demonstrated.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Telomerase/análise , Linhagem Celular Tumoral , Ouro/química , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , Hibridização de Ácido Nucleico
18.
Anal Chim Acta ; 973: 82-90, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502431

RESUMO

Nucleoside diphosphatase kinase A (NDPK-A) is a metastasis-suppressor protein and a biomarker that act on a wide range cancer cells to inhibit the potential metastasis. Herein, we present a simple photoelectrochemical immunosensor based on ZnO nanorod arrays for the sensitive detection of NDPK-A. The ZnO nanorod arrays cosensitized with CdS nanoparticles and Mn2+ displayed a high and stable photocurrent response under irradiation. After anti-NPDK-A nanobodies were immobilized to the ZnO nanorod arrays, the proposed immunosensor can be utilized for detecting NPDK-A by monitoring the changes in the photocurrent signals of the electrode resulting from immunoreaction. Accordingly, the well-designed immunosensor exhibited a low limit of detection (LOD) of 0.3 pg mL-1 and a wide linear range from 0.5 pg mL-1 to 10 µg mL-1. The R2 of the regression curve is 0.99782. Meanwhile, the good stability, reproducibility and specificity of the resulting photoelectrochemical biosensor are demonstrated. In addition, the presented work would offer a novel and simple approach for the detection of immunoreactions and provide new insights in popularizing the diagnosis of NPDK-A.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nucleosídeo NM23 Difosfato Quinases/análise , Nanotubos , Óxido de Zinco , Humanos , Imunoensaio , Nucleosídeo NM23 Difosfato Quinases/sangue , Reprodutibilidade dos Testes
19.
Anal Chem ; 89(6): 3430-3436, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28247764

RESUMO

MicroRNAs (miRNAs) play crucial roles in the regulation of cellular activities and are next-generation biomarkers for early cancer detection. Simultaneous monitoring of multiplexed miRNA is very important for enhancing the accuracy of cancer diagnostics. Traditional fluorescence methods for multicomponent analysis were usually operated under multiple excitation wavelengths, because spectral crosstalk is very detrimental to detecting accuracy for multicomponent analysis. Herein, we present a fluorescence strategy for multi-miRNAs detection in plasma under a single excitation wavelength. Nucleic acid stain TOTO-1 and three labeled fluorescence dyes Cy3, Cy3.5, and Cy5 emit no fluorescence in their free state. Target miRNA hybridized the auxiliary and probe oligonucleotides into duplex nucleic acid. Intercalation interaction localized TOTO-1 and labeled dyes into the duplex nucleic acid. As a result, TOTO-1 emitted strong fluorescence and efficient Förster resonance energy transfer (FRET) happened. MicroRNAs miRNA-155, miRNA-182, and miRNA-197, which are significant for the early diagnosis of lung cancer, were simultaneously detected as models. Deviations from spectral crosstalk in the presence of other miRNAs were corrected by mathematical methods. Results demonstrated that, after spectra crosstalk corrections, every miRNA at high or low concentration in plasma was determined accurately in the presence of either high or low concentrations of the other two miRNAs. This new multiplexed assay for miRNAs is promising for clinical diagnosis, prognosis, and therapeutic monitoring of early-stage lung cancer.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Neoplasias Pulmonares/diagnóstico por imagem , MicroRNAs/sangue , Tiazóis/química , DNA/química , Detecção Precoce de Câncer , Fluorescência , Humanos , Neoplasias Pulmonares/sangue
20.
Biosens Bioelectron ; 90: 321-328, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940234

RESUMO

We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais , Plantas Geneticamente Modificadas , Grafite/química , Ferro/química , Nanocompostos/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA