Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730256

RESUMO

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


Assuntos
Antígeno B7-H1 , Vírus Oncolíticos , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Adenosina/análogos & derivados , Regulação para Baixo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Terapia Viral Oncolítica/métodos , PTEN Fosfo-Hidrolase , Camundongos Knockout , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Simplexvirus , Linhagem Celular Tumoral
2.
Cancer Lett ; 588: 216727, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38431035

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Antígeno CD47 , Linhagem Celular Tumoral , Ferro/metabolismo , Microambiente Tumoral , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
3.
iScience ; 27(4): 109340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500829

RESUMO

Lactate is known to play a crucial role in the progression of malignancies. However, its mechanism in regulating the malignant phenotype of head and neck squamous cell carcinoma (HNSCC) remains unclear. This study found that lactate increases cancer stem cell (CSC) characteristics of HNSCC by influencing the deposition of type I collagen (Col I). Lactate promotes Col I deposition through two distinct pathways. One is to convert lactate to pyruvate, a substrate for Col I hydroxylation. The other is the activation of HIF1-α and P4HA1, the latter being a rate-limiting enzyme for Col I synthesis. Inhibition of these two pathways effectively counteracts lactate-induced enhanced cell stemness. Further studies revealed that Col I affects CSC properties by regulating cell cycle dynamics. In conclusion, our research proposes that lactate-driven Col I deposition is essential for the acquisition of CSC properties, and lactate-centric Col I deposition may be an effective target for CSCs.

4.
Orthop Surg ; 16(5): 1246-1251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556479

RESUMO

OBJECTIVE: Percutaneous CT-guided radiofrequency ablation (CT-RFA) is a widely accepted procedure for treatment of osteoid osteomas. However, the application of CT-RFA was restricted as a result of some drawbacks, such as radiation exposure, and inconvenience in general anesthesia. The primary aim of this study is to evaluate the safety and efficacy of intra-operative TiRobot-assisted percutaneous RFA of osteoid osteomas. METHODS: We retrospectively reviewed 21 medical files of patients who were treated with percutaneous RFA of osteoid osteomas guided by the TiRobot system in our institution between March 2021 and April 2022. The three-dimensional images obtained by a 3D C-arm intra-operatively were sent to the TiRobot system. The puncture point and trajectory were designed. Then the guide pin was positioned to the lesion with the assistance of TiRobot and the biopsy sheath was inserted into the lesion through the guide pin. The tumor was biopsied for pathological examination. Then the RFA needle was inserted into the nidus through the biopsy sheath for thermal ablation. Data were extracted on the associated complications, the reduction in pain at 1 month and 1 year postoperatively assessed by the visual analogue scale (VAS). A paired t-test was used to compare the pre-operative and post-operative VAS scores. RESULTS: The patients included 17 males and four females with a mean age of 19.5 ± 10.4 years (range 3-45 years). Lesions were located on the femur in nine cases, on the tibia in nine cases, on the humerus in one case, on the calcaneus in one case, and on the acetabulum in one case. TiRobot-assisted percutaneous RFA was successfully performed on all 21 patients. There was no intra-operative or post-operative complications observed. Pathological diagnosis of osteoid osteoma was obtained in 11 patients, but the other 10 cases were not pathologically diagnosed. The mean follow-up time was 18.8 months (range: 12-26 months).Post-operative VAS scores were reduced significantly in all cases. The mean VAS score decreased from 6.5 pre-operatively to 0.5 at 1 month post-operatively and to 0.1 at 1 year post-operatively. CONCLUSION: As a reliable technique for localizing and resection of nidus, TiRobot-assisted percutaneous RFA is a safe and effective option for the treatment of osteoid osteomas.


Assuntos
Neoplasias Ósseas , Osteoma Osteoide , Ablação por Radiofrequência , Procedimentos Cirúrgicos Robóticos , Humanos , Osteoma Osteoide/cirurgia , Osteoma Osteoide/diagnóstico por imagem , Masculino , Estudos Retrospectivos , Ablação por Radiofrequência/métodos , Feminino , Adolescente , Neoplasias Ósseas/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Criança , Adulto Jovem , Adulto , Tomografia Computadorizada por Raios X , Medição da Dor , Pessoa de Meia-Idade , Cirurgia Assistida por Computador/métodos
5.
Opt Lett ; 49(4): 862-865, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359201

RESUMO

A diode-pumped wavelength switchable passively Q-switched 2.3 µm Tm:YVO4 laser was demonstrated in this work. A Cr:ZnS saturable absorber was introduced into the cavity for initiating passive Q-switching. With the increase of the absorbed pump power, the passively Q-switched laser could be switched from the single wavelength of 2366 nm to the dual wavelength of 2290 and 2360 nm. The pulse duration and pulse repetition frequency could be tuned in the ranges of 0.745-1.782 µs and 2.9-43.4 kHz, respectively. The pulse energy and peak power were estimated to be 7.5 µJ and 10 W, respectively, at an absorbed pump power of 12 W.

6.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629087

RESUMO

Metabolism plays a critical role in cancer. OLR1 has been implicated in cardiovascular and metabolic disorders, while its association with tumorigenesis and tumor immunity remains poorly defined in the literature. We conducted comprehensive pan-cancer analyses based on the TCGA database to examine OLR1 expression and its prognostic implications. Correlations between OLR1 expression level and tumor immunity and immunotherapy were investigated by immune infiltration, enrichment, and TIDE analysis methods. Immunohistochemistry detected OLR1 expression in HNSCC. We used the GSEA method to explore the potential signaling pathways in which OLR1 is involved, and a correlation analysis to investigate the relationships between OLR1 and epithelial-mesenchymal transition (EMT) and cuproptosis. In addition, the effects of OLR1 knockdown on the EMT process, invasion, stemness, and cuproptosis of HNSCC cells were examined by scratch, Transwell, CCK8, sphere formation, and flow cytometry, while changes in related proteins were detected using the immunoblotting method. OLR1 is highly expressed in most cancers, and it is associated with patient prognosis. OLR1 expression positively correlates with immunosuppressive cell infiltration and immune checkpoint molecules, while being negatively associated with effector T cells. Moreover, significant correlations are observed between OLR1 expression and tumor mutation burden (TMB) and microsatellite instability (MSI) in some cancers. In HNSCC, OLR1 expression is related to advanced clinicopathological factors and unfavorable outcomes. Patients with high OLR1 expression levels are prone to experience immune escape and benefit less from immune checkpoint inhibitor (ICI) therapy. Moreover, OLR1 expression may affect EMT, stemness, and cuproptosis resistance outcomes. OLR1 is an immune-related prognostic biomarker with potential as a prognostic indicator for immunotherapy, and it may also be involved in regulating the EMT process and cuproptosis in HNSCC.


Assuntos
Apoptose , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Humanos , Carcinogênese , Transição Epitelial-Mesenquimal/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Prognóstico , Receptores Depuradores Classe E , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Cobre
7.
Int J Oral Sci ; 15(1): 24, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291150

RESUMO

Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3ß, which in turn facilitates nuclear translocation of ß-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Autofagia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas de Membrana Lisossomal
8.
iScience ; 26(6): 106916, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305703

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.

9.
Cancer Lett ; 558: 216105, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841416

RESUMO

Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells associated with favourable prognosis and response to immunotherapy in cancer, but the immune architecture of TLSs remains poorly elucidated. Here, we hypothesize that the spatial architecture of leukocytes in TLSs can be reconstructed de novo, at least partially, by cell-inherent chemokine receptors profiles. Single-cell RNA-sequencing (scRNA-seq) revealed 47 subpopulations of leukocytes in head and neck squamous cell carcinoma (HNSC). Combined with bulk RNA-seq, we observed that CXCR3, CCR7, CCR6, CXCR5, and CCR1 are TLS-associated chemokine receptors. According to the spatial reference, the cellular atlas with TLS-associated chemokine receptors in HNSC TLSs was elaborately portrayed by multiplex immunohistochemistry (mIHC). Subsequently, we explored the functions and evolutionary trajectory of cells distributed in TLSs. Our investigation presents an approach to reconstructing the immune architecture of TLSs, which would help boost the antitumor immune response by inducing neogenesis TLSs in HNSC.


Assuntos
Neoplasias de Cabeça e Pescoço , Estruturas Linfoides Terciárias , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estruturas Linfoides Terciárias/patologia , Prognóstico , Receptores de Quimiocinas
10.
Chem Soc Rev ; 51(12): 5136-5174, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35666131

RESUMO

Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.


Assuntos
Vacinas Anticâncer , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia/métodos , Nanogéis , Neoplasias/tratamento farmacológico , Microambiente Tumoral
11.
J Cachexia Sarcopenia Muscle ; 13(2): 1210-1223, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142084

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common clinical manifestation of various neurotrauma and neurological diseases. In addition to the treatment of primary neuropathies, it is a clinical condition that should be investigated. FoxO3 activation is an indispensable mechanism in denervation-induced muscle atrophy; however, upstream factors that control FoxO3 expression and activity have not been fully elucidated. N6 -methyladenosine (m6 A) methylation is a novel mode of epitranscriptional gene regulation that affects several cellular processes. However, the biological significance of m6 A modification in FoxO3-dependent atrophy is unknown. METHODS: We performed gain-of-function and loss-of-function experiments and used denervation-induced muscle atrophy mouse model to evaluate the effects of m6 A modification on muscle mass control and FoxO3 activation. m6 A-sequencing and mass spectrometry analyses were used to establish whether histone deacetylase 4 (HDAC4) is a mediator of m6 A demethylase ALKBH5 regulation of FoxO3. A series of cellular and molecular biological experiments (western blot, immunoprecipitation, half-life assay, m6 A-MeRIP-qPCR, and luciferase reporter assays among others) were performed to investigate regulatory relationships among ALKBH5, HDAC4, and FoxO3. RESULTS: In skeletal muscles, denervation was associated with a 20.7-31.9% decrease in m6 A levels (P < 0.01) and a 35.6-115.2% increase in demethylase ALKBH5 protein levels (P < 0.05). Overexpressed ALKBH5 reduced m6 A levels, activated FoxO3 signalling, and induced excess loss in muscle wet weight (-10.3% for innervation and -11.4% for denervation, P < 0.05) as well as a decrease in myofibre cross-sectional areas (-35.8% for innervation and -33.3% for denervation, P < 0.05) during innervation and denervation. Specific deletion of Alkbh5 in the skeletal muscles prevented FoxO3 activation and protected mice from denervation-induced muscle atrophy, as evidenced by increased muscle mass (+16.0%, P < 0.05), size (+50.0%, P < 0.05) and MyHC expression (+32.6%, P < 0.05). Mechanistically, HDAC4 was established to be a crucial central mediator for ALKBH5 in enhancing FoxO3 signalling in denervated muscles. ALKBH5 demethylates and stabilizes Hdac4 mRNA. HDAC4 interacts with and deacetylates FoxO3, resulting in a significant increase in FoxO3 expression (+61.3-82.5%, P < 0.01) and activity (+51.6-122.0%, P < 0.001). CONCLUSIONS: Our findings elucidate on the roles and mechanisms of ALKBH5-mediated m6 A demethylation in the control of muscle mass during denervation and activation of FoxO3 signalling by targeting HDAC4. These results suggest that ALKBH5 is a potential therapeutic target for neurogenic muscle atrophy.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Proteína Forkhead Box O3 , Histona Desacetilases , Atrofia Muscular , Homólogo AlkB 5 da RNA Desmetilase/genética , Animais , Denervação , Proteína Forkhead Box O3/genética , Histona Desacetilases/genética , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/genética , Transdução de Sinais
12.
Cancer Biol Med ; 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34931767

RESUMO

Pyroptosis is a form of proinflammatory cell death that depends on the gasdermin family of proteins. The main features of pyroptosis are altered membrane permeability, cell swelling, membrane rupture, and the ability to mobilize a strong immune response. The relationship between pyroptosis and cancer has become a popular topic in immunological research. Multiple strategies for inducing pyroptosis in cancer cells have been developed for cancer therapy, including chemotherapy, small molecule drugs, and nanomedicines. In this review, we systematically discuss recent advances in research on the mechanisms of pyroptosis, and compare pyroptosis with apoptosis and necroptosis from several aspects. The development of various experimental systems has accompanied rapid progress in this field, but little consensus on monitoring pyroptosis is currently available. We focus on techniques commonly used to monitor pyroptosis, and describe future techniques that may be used to increase our knowledge in this field. Overall, the advancement of pyroptosis detection methods will help researchers to better investigate the relationships between pyroptosis and various cancers, and should provide insights into the use of these promising tools for cancer treatments.

13.
Mol Carcinog ; 60(8): 556-566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34061408

RESUMO

The epithelial-mesenchymal transition (EMT) is a pivotal step involved in cancer recurrence and metastasis. In addition, the activation of the EMT program can induce a cancer stem cell (CSC)-like phenotype and programmed death-ligand 1 (PD-L1) expression in head and neck squamous cell carcinoma (HNSCC). The CMTM family has reported as an important regulator in this process. Here, we investigated the role of CMTM4 in HNSCC. We indicated that CMTM4 was overexpressed in human and mouse HNSCC samples and in HNSCC cell lines by immunohistochemistry and Western blot. A high expression level of CMTM4 was correlated with advanced lymph node metastasis and a negative prognosis. CMTM4-knockdown by small interfering RNA downregulated the EMT process and inhibited the migration and invasion abilities of tumor cells. Moreover, knockdown of CMTM4 decreased CSC-associated markers via the protein kinase B pathway. Notably, CMTM4-knockdown inhibited the expression of interferon-γ induced PD-L1 in HNSCC cells. A positive correlation was found between CMTM4 expression and CD8+ and PD-1+ cell density in the stroma. Our findings indicated that CMTM4 may play an important role in regulating EMT/CSC phenotypes and PD-L1 expression. This study may reinforce the interest in CMTM4 as a potential target for the prognosis and treatment of HNSCC.


Assuntos
Antígeno B7-H1/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio MARVEL/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Metástase Linfática , Proteínas com Domínio MARVEL/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/genética
14.
Theranostics ; 11(11): 5365-5386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859752

RESUMO

Immunotherapy, represented by immune checkpoint inhibitors (ICIs), has greatly improved the clinical efficacy of malignant tumor therapy. ICI-mediated antitumor responses depend on the infiltration of T cells capable of recognizing and killing tumor cells. ICIs are not effective in "cold tumors", which are characterized by the lack of T-cell infiltration. To realize the full potential of immunotherapy and solve this obstacle, it is essential to understand the drivers of T-cell infiltration into tumors. We present a critical review of our understanding of the mechanisms underlying "cold tumors", including impaired T-cell priming and deficient T-cell homing to tumor beds. "Hot tumors" with significant T-cell infiltration are associated with better ICI efficacy. In this review, we summarize multiple strategies that promote the transformation of "cold tumors" into "hot tumors" and discuss the mechanisms by which these strategies lead to increased T-cell infiltration. Finally, we discuss the application of nanomaterials to tumor immunotherapy and provide an outlook on the future of this emerging field. The combination of nanomedicines and immunotherapy enhances cross-presentation of tumor antigens and promotes T-cell priming and infiltration. A deeper understanding of these mechanisms opens new possibilities for the development of multiple T cell-based combination therapies to improve ICI effectiveness.


Assuntos
Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Imunoterapia/métodos , Nanomedicina/métodos
15.
Bone ; 146: 115886, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592327

RESUMO

Magnesium (Mg2+), as an essential mineral, supports and sustains the health and activity of the organs of the human body. Despite some clinical evidence on the association of Mg2+ deficiency with muscle regeneration dysfunction and sarcopenia in older-aged individuals, there is no consensus on the action mode and molecular mechanism by which Mg2+ influences aged muscle size and function. Here, we identified the appropriate Mg2+ environment that promotes the myogenic differentiation and myotube hypertrophy in both C2C12 myoblast and primary aged muscle stem cell (MuSC). Through animal experiments, we demonstrated that Mg2+ supplementation in aged mice significantly promotes muscle regeneration and conserves muscle mass and strength. Mechanistically, Mg2+ stimulation activated the mammalian target of rapamycin (mTOR) signalling, inducing the myogenic differentiation and protein synthesis, which consequently offers protections against the age-related decline in muscle regenerative potential and muscle mass. These findings collectively provide a promising therapeutic strategy for MuSC dysfunction and sarcopenia through Mg2+ supplementation in the elderly.


Assuntos
Magnésio , Desenvolvimento Muscular , Animais , Diferenciação Celular , Suplementos Nutricionais , Magnésio/farmacologia , Camundongos , Músculo Esquelético , Serina-Treonina Quinases TOR
16.
Neurosci Res ; 169: 9-16, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32593591

RESUMO

The pathogenesis of diabetic peripheral neuropathy (DPN) is complex and not well understood. Recently, oxidative stress and endoplasmic reticulum (ER) stress induced by hyperglycemia have been demonstrated to play a critical role in neuronal apoptosis, which then contributing to DPN. However, the specific molecular mechanism that underlies the hyperglycemia-induced neuronal stresses and apoptosis remains largely unknown. In this study, we demonstrated for the first time that Pim1 kinase is a positive modulator of dorsal root ganglion (DRG) neuron survival in vitro. Hyperglycemia causes compensatory upregulation of Pim1 kinase in the DRG neurons, which provides protection against high glucose-induced oxidative stress and ER stress. Pharmacological inhibition of Pim1 not only sensitizes the stress response to high glucose in the DRG neurons, but also accelerates the apoptosis of DRG neurons in vitro. Therefore, our work provides experimental evidence for the prevention of high glucose-induced neuronal stress and apoptosis by targeting Pim1 kinase.


Assuntos
Gânglios Espinais , Neurônios , Apoptose , Estresse do Retículo Endoplasmático , Glucose , Estresse Oxidativo
17.
Cell Death Dis ; 10(10): 773, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601787

RESUMO

Adult skeletal muscle regeneration after injury depends on normal myoblast function. However, the intrinsic mechanisms for the control of myoblast behaviors are not well defined. Herein, we identified Pim1 kinase as a novel positive regulator of myoblast behaviors in vitro and muscle regeneration in vivo. Specifically, knockdown of Pim1 significantly restrains the proliferation and accelerates the apoptosis of myoblasts in vitro, indicating that Pim1 is critical for myoblast survival and amplification. Meanwhile, we found that Pim1 kinase is increased and translocated from cytoplasm into nucleus during myogenic differentiation. By using Pim1 kinase inhibitor, we proved that inhibition of Pim1 activity prevents myoblast differentiation and fusion, suggesting the necessity of Pim1 kinase activity for proper myogenesis. Mechanistic studies demonstrated that Pim1 kinase interacts with myogenic regulator MyoD and controls its transcriptional activity, inducing the expression of muscle-specific genes, which consequently promotes myogenic differentiation. Additionally, in skeletal muscle injury mouse model, deletion of Pim1 hinders the regeneration of muscle fibers and the recovery of muscle strength. Taken together, our study provides a potential target for the manipulation of myoblast behaviors in vitro and the myoblast-based therapeutics of skeletal muscle injury.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Regeneração/genética , Animais , Apoptose/genética , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/ética , Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/enzimologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Mioblastos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Regulação para Cima
18.
Spine (Phila Pa 1976) ; 44(15): E865-E872, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817738

RESUMO

STUDY DESIGN: Animal experiment: a rat model of lumbar disc herniation (LDH) induced painful radiculopathies. OBJECTIVE: To investigate the role and mechanism of AMP-activated protein kinase (AMPK) in dorsal root ganglia (DRG) neurons in LDH-induced painful radiculopathies. SUMMARY OF BACKGROUND DATA: Overactivation of multiple pain signals in DRG neurons triggered by LDH is crucial to the development of radicular pain. AMPK is recognized as a cellular energy sensor, as well as a pain sensation modulator, but its function in LDH-induced pain hypersensitivity remains largely unknown. METHODS: The LDH rat model was established by autologous nucleus pulposus transplantation into the right lumbar 5 (L5) nerve root. At different time points after AMPK agonist metformin (250 mg/kg/d) or mammalian target of rapamycin (mTOR) inhibitor rapamycin (5 mg/kg) intraperitoneal administration, thermal and mechanical sensitivity were evaluated by measuring paw withdrawal latency (PWL) and 50% paw withdrawal thresholds (PWT). The levels of AMPK, mTOR, and p70S6K phosphorylation were determined by Western blot. We also investigated the proportion of p-AMPK positive neurons in the right L5 DRG neurons using immunofluorescence. RESULTS: LDH evoked persistent thermal hyperalgesia and mechanical allodynia on the ipsilateral paw, as indicated by the decreased PWL and 50% PWT. These pain hypersensitive behaviors were accompanied with significant inhibition of AMPK and activation of mTOR in the associated DRG neurons. Pharmacological activation of AMPK in the DRG neurons not only suppressed mTOR/p70S6K signaling, but also alleviated LDH-induced pain hypersensitive behaviors. CONCLUSION: We provide a molecular mechanism for the activation of pain signals based on AMPK-mTOR axis, as well as an intervention strategy by targeting AMPK-mTOR axis in LDH-induced painful radiculopathies. LEVEL OF EVIDENCE: N/A.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Radiculopatia/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Gânglios Espinais/enzimologia , Hiperalgesia/enzimologia , Degeneração do Disco Intervertebral/enzimologia , Deslocamento do Disco Intervertebral/enzimologia , Masculino , Metformina/farmacologia , Neurônios/enzimologia , Neurônios/metabolismo , Núcleo Pulposo/enzimologia , Núcleo Pulposo/metabolismo , Dor/enzimologia , Dor/metabolismo , Fosforilação , Radiculopatia/enzimologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Raízes Nervosas Espinhais/enzimologia , Raízes Nervosas Espinhais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Exp Cell Res ; 374(1): 198-209, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500392

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is involved in a variety of biological processes in different cell types and disease conditions, including myogenesis. However, the specific function of CARM1 in skeletal muscle wasting under pathologic conditions remains unclear. Here, we identify CARM1 as a novel participant in muscular atrophy. Increases in CARM1 protein levels correlated positively with the loss of muscle mass upon denervation in mice. Notably, the knockdown of CARM1 represses the progression of muscle wasting and the expression of the atrophy-related genes Atrogin-1 and MuRF1 in vivo and in vitro. With respect to the underlying mechanism, we show that CARM1 interacts with and asymmetrically dimethylates FoxO3 (a specific transcription factor that controls atrophy-related gene expression). This methylation modification by CARM1 is required for FoxO3-dependent transcription. Accordingly, a CARM1 methyltransferase inhibitor also restrains the expression of Atrogin-1 and MuRF1 and myotube atrophy. Furthermore, CARM1 knockdown induces a remarkable myofiber autophagic deficit during the atrophy process. Altogether, our study identifies a crucial regulator of skeletal muscle atrophy and suggests that CARM1 is a potential target for the prevention of muscle atrophy.


Assuntos
Autofagia , Proteína Forkhead Box O3/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Linhagem Celular , Dexametasona , Masculino , Metilação , Camundongos Endogâmicos C57BL , Modelos Biológicos , Denervação Muscular , Atrofia Muscular/patologia , Tamanho do Órgão , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA