Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Acta Pharm Sin B ; 14(6): 2447-2474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828133

RESUMO

The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.

2.
Acta Biomater ; 176: 51-76, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237711

RESUMO

Despite the current promise of immunotherapy, many cancer patients still suffer from challenges such as poor immune response rates, resulting in unsatisfactory clinical efficacy of existing therapies. There is an urgent need to combine emerging biomedical discoveries and innovations in traditional therapies. Modulation of the cGAS-STING signalling pathway represents an important innate immunotherapy pathway that serves as a crucial DNA sensing mechanism in innate immunity and viral defense. It has attracted increasing attention as an emerging target for cancer therapy. The recent advancements in nanotechnology have led to the significant utilization of nanomaterials in cancer immunotherapy, owing to their exceptional physicochemical properties such as large specific surface area and efficient permeability. Given the rapid development of cancer immunotherapy driven by the cGAS-STING activation, this study reviews the latest research progress in employing nanomaterials to modulate this signaling pathway. Based on the introduction of the main activation mechanisms of cGAS-STING pathway, this review focuses on nanomaterials that mediate the agonists involved and effectively activate this signaling pathway. In addition, combination nanotherapeutics based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as other immunomodulation in tumor targeting therapy. STATEMENT OF SIGNIFICANCE: Given the rapid development of cancer immunotherapy driven by the cGAS / STING activation, this study reviews the latest research advances in the use of nanomaterials to modulate this signaling pathway. Based on the introduction of key cGAS-STING components and their activation mechanisms, this review focuses on nanomaterials that can mediate the corresponding agonists and effectively activate this signaling pathway. In addition, combination nanotherapies based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as immunomodulation in cancer therapy,.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Imunoterapia , Imunomodulação , Imunidade Inata , Nucleotidiltransferases , Transdução de Sinais , Neoplasias/terapia
3.
Hypertension ; 81(3): 530-540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193292

RESUMO

BACKGROUND: CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS: We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS: We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS: Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.


Assuntos
Linfócitos T CD8-Positivos , Hipertensão , Camundongos , Animais , Receptores Purinérgicos P2X7/genética , Camundongos Knockout , Cloreto de Sódio na Dieta , Sódio , Trifosfato de Adenosina , Camundongos Endogâmicos C57BL
4.
Adv Healthc Mater ; 12(28): e2301401, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537715

RESUMO

The potential of small interfering RNAs (siRNAs) in the treatment of malignant tumors has attracted increasing attention due to their inherent advantages. However, their therapeutic performance strongly depends on the efficiency of their cytoplasmic delivery in vivo by the delivery vehicle with good cellular permeability and histocompatibility. Herein, a polycationic carrier camouflaged with macrophage membrane (MPM) is constructed biomimetically, which is condensed from endogenous spermine monomers through diselenide bonds. The developed Trojan horse delivery vehicle has desirable compression efficacy for siRNA oligo against PD-L1 (siPDL1) as well as intracytoplasmic release properties derived from its sequential degradation triggered by redox microenvironment in tumor cells. Furthermore, the coloading of photosensitizer can mediate photodynamic therapy (PDT) accompanied by the generation of reactive oxygen species (ROS) upon light irradiation applied, which accelerated the degradation of the carrier as well as the release of cargoes while enhancing the PD-L1 blockage-mediated immunotherapy by inducing in-situ immunogenic cell death. Moreover, the synchronously delivered siPDL1 attenuated the ROS-induced increase in immunosuppressive PD-L1 expression, thereby effectively eliciting a robust antitumor immune response with a "self-synergistic" manner in the xenograft breast cancer mouse model.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Animais , Camundongos , Antígeno B7-H1/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Nanopartículas/química , Imunoterapia
5.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514610

RESUMO

Compared to wide-field telescopes, small-field detection systems have higher spatial resolution, resulting in stronger detection capabilities and higher positioning accuracy. When detecting by small fields in synchronous orbit, both space debris and fixed stars are imaged as point targets, making it difficult to distinguish them. In addition, with the improvement in detection capabilities, the number of stars in the background rapidly increases, which puts higher requirements on recognition algorithms. Therefore, star detection is indispensable for identifying and locating space debris in complex backgrounds. To address these difficulties, this paper proposes a real-time star extraction method based on adaptive filtering and multi-frame projection. We use bad point repair and background suppression algorithms to preprocess star images. Afterwards, we analyze and enhance the target signal-to-noise ratio (SNR). Then, we use multi-frame projection to fuse information. Subsequently, adaptive filtering, adaptive morphology, and adaptive median filtering algorithms are proposed to detect trajectories. Finally, the projection is released to locate the target. Our recognition algorithm has been verified by real star images, and the images were captured using small-field telescopes. The experimental results demonstrate the effectiveness of the algorithm proposed in this paper. We successfully extracted hip-27066 star, which has a magnitude of about 12 and an SNR of about 1.5. Compared with existing methods, our algorithm has advantages in both recognition rate and false-alarm rate, and can be used as a real-time target recognition algorithm for space-based synchronous orbit detection payloads.

6.
Front Cardiovasc Med ; 10: 1129384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970367

RESUMO

Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.

7.
Acta Biomater ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36792046

RESUMO

Despite the strong potential of RNA interference (RNAi) therapies, critical issues, such as poor permeability across biological membranes and efficacy of their delivery into the cytoplasm, remain to be addressed before their successful clinical application. The current study aimed to address these issues by constructing a biomimetic nanoplex with dual redox responsiveness, which is derived from a cationic polymer formed by the condensation of endogenous spermine monomers via diselenide bonds. The developed nanoplexes decomposed in response to the redox microenvironment in cancer cells, thereby avoiding accumulation toxicity and poor transfection efficiency owing to incomplete siRNA release. When co-delivered with siPDL1 and a photosensitizer, the reactive oxygen species generated by irradiated nanoplexes accelerated the cytoplasmic release of siPDL1, which was expected to alleviate the PDT-induced increase in immunosuppressive PD-L1 expression. In a murine model of 4T1 xenografted breast cancer, the fabricated macrophage membrane (MPM)-camouflaged nanoplexes with payloads boosted antitumor immune responses in situ through a "self-synergistic" immunogenic cell death induced by photodynamic therapy (PDT). Overall, the study reported a new strategy for harnessing photodynamic immunotherapy for treating immunologically cold tumors. STATEMENT OF SIGNIFICANCE: This study provides a biomimetic nanoplex with dual redox responsiveness, which is derived from a novel cationic polymer formed by the condensation of endogenous spermine monomers through diselenide bonds. The developed nanoplex disassembles according to the redox microenvironment in cancer cells, thereby avoiding accumulation toxicity and poor transfection efficiency due to incomplete siRNA release. When co-delivery of siPDL1 and photosensitizer in vivo, the ROS generated by irradiated nanoplexes accelerated the cytoplasmic release of siPDL1, and which is expected to alleviate PDT-induced increase in immunosuppressive PD-L1 expression, thereby boosting antitumor immune responses in situ through a "self-synergistic" immunogenic cell death induced by PDT. Our findings reveal a new strategy of harnessing photodynamic immunotherapy therapy toward immunologically cold tumors.

8.
Adv Healthc Mater ; 12(2): e2202017, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321509

RESUMO

As a promising cancer treatment modality that has emerged, photothermal therapy can harness antitumor immunity by triggering immunogenic cell death (ICD) in addition to direct cell ablation. However, the immuno-stimulation induced by PTT alone is insufficient to achieve satisfactory cancer eradication, especially in immunologically "cold" tumors due to their harsh immunosuppressive microenvironment. Effective activation of the innate immune system is indispensable to boost a robust adaptive antitumor immune response typically initiated by dendritic cells (DCs). Herein the above issues are addressed by constructing an environmentally responsive supramolecular nanoself-assembly (PSAs) derived from a novel polypeptide-based block copolymer, which is capable of co-load photothermal immunomodulators efficiently under structure-guided π-π stacking interactions. In the murine model of 4T1 xenograft tumors, the fabricated PSAs with payloads trigger both adaptive and innate immune responses in situ through activation of ICD as well as STING-dependent signal pathway. The findings reveal a new mechanism of harnessing photothermal therapy toward immunologically "cold" tumors.


Assuntos
Nanoestruturas , Neoplasias , Terapia Fototérmica , Animais , Humanos , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Imunidade Inata/efeitos dos fármacos , Imunoterapia , Neoplasias/terapia , Peptídeos/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
9.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430873

RESUMO

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta
10.
Kidney360 ; 3(12): 2164-2173, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36591357

RESUMO

Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.


Assuntos
Linfócitos T CD8-Positivos , Hipertensão , Interferon gama , Humanos , Pressão Sanguínea/genética , Pressão Sanguínea/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas , Hipertensão/genética , Hipertensão/imunologia , Interferon gama/genética , Interferon gama/imunologia
11.
Front Pharmacol ; 12: 620433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716747

RESUMO

Severe renal fibrosis often occurs in obstructive kidney disease, not only in the obstructed kidney but also in the contralateral kidney, causing renal dysfunction. Although the mechanisms of injury in obstructed kidney have been studied for years, the pathogenesis of fibrosis in the contralateral kidney remains largely unknown. Here, we examined long-term unilateral ureteral obstruction (UUO) model in male Sprague-Dawley rats and found that macrophage-to-myofibroblast transition (MMT) is contributing to renal fibrosis in the contralateral kidney of UUO rats. Interestingly, this process was attenuated by treatment of eplerenone, a specific blocker of the mineralocorticoid receptor (MR). In-vitro, stimulating MR in primary cultured or cell line macrophages enhances MMT, which were also inhibited by MR blockade. Collectively, these findings provide a plausible mechanism for UUO-induced injury in the contralateral kidney, suggesting the benefit of using MR blockage as a part of treatment to UUO to protect the contralateral kidney thereby preserve renal function.

12.
J Pharmacol Exp Ther ; 376(1): 40-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33100270

RESUMO

Pharmacological openers of ATP-sensitive potassium (KATP) channels are effective antihypertensive agents, but off-target effects, including severe peripheral edema, limit their clinical usefulness. It is presumed that the arterial dilation induced by KATP channel openers (KCOs) increases capillary pressure to promote filtration edema. However, KATP channels also are expressed by lymphatic muscle cells (LMCs), raising the possibility that KCOs also attenuate lymph flow to increase interstitial fluid. The present study explored the effect of KCOs on lymphatic contractile function and lymph flow. In isolated rat mesenteric lymph vessels (LVs), the prototypic KATP channel opener cromakalim (0.01-3 µmol/l) progressively inhibited rhythmic contractions and calculated intraluminal flow. Minoxidil sulfate and diazoxide (0.01-100 µmol/l) had similar effects at clinically relevant plasma concentrations. High-speed in vivo imaging of the rat mesenteric lymphatic circulation revealed that superfusion of LVs with cromakalim and minoxidil sulfate (0.01-10 µmol/l) maximally decreased lymph flow in vivo by 38.4% and 27.4%, respectively. Real-time polymerase chain reaction and flow cytometry identified the abundant KATP channel subunits in LMCs as the pore-forming Kir6.1/6.2 and regulatory sulfonylurea receptor 2 subunits. Patch-clamp studies detected cromakalim-elicited unitary K+ currents in cell-attached patches of LMCs with a single-channel conductance of 46.4 pS, which is a property consistent with Kir6.1/6.2 tetrameric channels. Addition of minoxidil sulfate and diazoxide elicited unitary currents of similar amplitude. Collectively, our findings indicate that KCOs attenuate lymph flow at clinically relevant plasma concentrations as a potential contributing mechanism to peripheral edema. SIGNIFICANCE STATEMENT: ATP-sensitive potassium (KATP) channel openers (KCOs) are potent antihypertensive medications, but off-target effects, including severe peripheral edema, limit their clinical use. Here, we demonstrate that KCOs impair the rhythmic contractions of lymph vessels and attenuate lymph flow, which may promote edema formation. Our finding that the KATP channels in lymphatic muscle cells may be unique from their counterparts in arterial muscle implies that designing arterial-selective KCOs may avoid activation of lymphatic KATP channels and peripheral edema.


Assuntos
Edema/etiologia , Canais KATP/metabolismo , Vasos Linfáticos/fisiologia , Contração Muscular , Potenciais de Ação , Animais , Células Cultivadas , Cromakalim/farmacologia , Diazóxido/farmacologia , Canais KATP/agonistas , Canais KATP/genética , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Masculino , Minoxidil/análogos & derivados , Minoxidil/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Top Stroke Rehabil ; 28(4): 276-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32799771

RESUMO

Introduction: In recent years, robotic training has been utilized for recovery of motor control in patients with motor deficits. Along with clinical assessment, electrical patterns in the brain have emerged as a marker for studying changes in the brain associated with brain injury and rehabilitation. These changes mainly involve an imbalance between the two hemispheres. We aimed to study the effect of brain computer interface (BCI)-based robotic hand training on stroke subjects using clinical assessment, electroencephalographic (EEG) complexity analysis, and functional magnetic resonance imaging (fMRI) connectivity analysis. Method: Resting-state simultaneous EEG-fMRI was conducted on 14 stroke subjects before and after training who underwent 20 sessions robot hand training. Fractal dimension (FD) analysis was used to assess neuronal impairment and functional recovery using the EEG data, and fMRI connectivity analysis was performed to assess changes in the connectivity of brain networks. Results: FD results indicated a significant asymmetric difference between the ipsilesional and contralesional hemispheres before training, which was reduced after robotic hand training. Moreover, a positive correlation between interhemispheric asymmetry change for central brain region and change in Fugl Meyer Assessment (FMA) scores for upper limb was observed. Connectivity results showed a significant difference between pre-training interhemispheric connectivity and post-training interhemispheric connectivity. Moreover, the change in connectivity correlated with the change in FMA scores. Results also indicated a correlation between the increase in connectivity for motor regions and decrease in FD interhemispheric asymmetry for central brain region covering the motor area. Conclusion: In conclusion, robotic hand training significantly facilitated stroke motor recovery, and FD, along with connectivity analysis can detect neuroplasticity changes.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem
14.
Front Hum Neurosci ; 14: 207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670036

RESUMO

The influence of motivation on selective visual attention in states of high vs. low vigilance is poorly understood. To explore the possible differences in the influence of motivation on behavioral performance and neural activity in high and low vigilance levels, we conducted a prolonged 2 h 20 min flanker task and provided monetary rewards during the 20- to 40- and 100- to 120-min intervals of task performance. Both the behavioral and electrophysiological measures were modulated by prolonged task engagement. Moreover, the effect of reward was different in high vs. low vigilance states. The monetary reward increased accuracy and decreased the reaction time (RT) and number of omitted responses in the low but not in the high vigilance state. The fatigue-related decrease in P300 amplitude recovered to its level in the high vigilance state by manipulating motivation, whereas the fatigue-related increase in P300 latency was not modulated by reward. Additionally, the fatigue-related increase in event-related spectral power at 1-4 Hz was sensitive to vigilance decrement and reward. However, the spectral power at 4-8 Hz was only affected by the decrease in vigilance. These electrophysiological measures were not influenced by motivation in the state of high vigilance. Our results suggest that neural processing capacity, but not the timing of processing, is sensitive to motivation. These findings also imply that the fatigue-related impairments in behavioral performance and neural activity underlying selective visual attention only partly recover after manipulating motivation. Furthermore, our results provide evidence for the dissociable neural mechanisms underlying the fatigue-related decrease vs. reward-related increase in attentional resources.

15.
Nat Commun ; 8: 14037, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067240

RESUMO

Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl- channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Hipertensão/genética , Túbulos Renais Distais/imunologia , Sódio/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Canais de Cloreto/genética , Canais de Cloreto/imunologia , Cloretos/imunologia , Cloretos/metabolismo , Técnicas de Cocultura , Ácido Desoxicólico/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/patologia , Transporte de Íons , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/imunologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sódio/imunologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/imunologia , Quinases da Família src/genética , Quinases da Família src/imunologia
16.
PLoS One ; 5(12): e14271, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21151567

RESUMO

BACKGROUND: The trinucleotide repeats AAT•ATT are simple DNA sequences that potentially form different types of non-B DNA secondary structures and cause genomic instabilities in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: The molecular mechanism underlying the maintenance of a 24-triplet AAT•ATT repeat was examined in E. coli by cloning the repeats into the EcoRI site in plasmid pUC18 and into the attB site on the E. coli genome. Either the AAT or the ATT strand acted as lagging strand template in a replication fork. Propagations of the repeats in either orientation on plasmids did not affect colony morphology when triplet repeat transcription using the lacZ promoter was repressed either by supplementing LacI(Q)in trans or by adding glucose into the medium. In contrast, transparent colonies were formed by inducing transcription of the repeats, suggesting that transcription of AAT•ATT repeats was toxic to cell growth. Meanwhile, significant IS1E transposition events were observed both into the triplet repeats region proximal to the promoter side, the promoter region of the lacZ gene, and into the AAT•ATT region itself. Transposition reversed the transparent colony phenotype back into healthy, convex colonies. In contrast, transcription of an 8-triplet AAT•ATT repeat in either orientation on plasmids did not produce significant changes in cell morphology and did not promote IS1E transposition events. We further found that a role of IS1E transposition into plasmids was to inhibit transcription through the repeats, which was influenced by the presence of the H-NS protein, but not of its paralogue StpA. CONCLUSIONS AND SIGNIFICANCE: Our findings thus suggest that the longer AAT•ATT triplet repeats in E. coli become vulnerable after transcription. H-NS and its facilitated IS1E transposition can silence long triplet repeats transcription and preserve cell growth and survival.


Assuntos
Escherichia coli/genética , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Proliferação de Células , Cromossomos/ultraestrutura , Cromossomos Bacterianos/metabolismo , Eletroforese em Gel de Ágar , Inativação Gênica , Glucose/metabolismo , Óperon Lac/genética , Modelos Genéticos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA