Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003045

RESUMO

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Assuntos
Arsênio , Carvão Vegetal , Aprendizado de Máquina , Poluentes do Solo , Solo , Carvão Vegetal/química , Arsênio/química , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Modelos Químicos
2.
Nucleic Acids Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087525

RESUMO

Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.

3.
Acta Biomater ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097126

RESUMO

Reactive oxygen species (ROS) are widely considered to the effective therapeutics for fighting bacterial infections especially those associated with biofilm. However, biofilm microenvironments including hypoxia, limited H2O2, and high glutathione (GSH) level seriously limit the therapeutic efficacy of ROS-based strategies. Herein, we have developed an acidic biofilm microenvironment-responsive antibacterial nanoplatform consisting of copper-dopped bovine serum albumin (CBSA) loaded with copper peroxide (CuO2) synthesized in situ and indocyanine green (ICG). The three-in-one nanotherapeutics (CuO2/ICG@CBSA) are capable of releasing Cu2+ and H2O2 in a slightly acidic environment, where Cu2+ catalyzes the conversion of H2O2 into hydroxyl radical (•OH) and consumes the highly expressed GSH to disrupt the redox homeostasis. With the assistance of an 808 nm laser, the loaded ICG not only triggers the production of singlet oxygen (1O2) by a photodynamic process, but also provides photonic hyperpyrexia that further promotes the Fenton-like reaction for enhancing •OH production and induces thermal decomposition of CuO2 for the O2-self-supplying 1O2 generation. The CuO2/ICG@CBSA with laser irradiation demonstrates photothermal-augmented multi-mode synergistic bactericidal effect and is capable of inhibiting biofilm formation and eradicating the biofilm bacteria. Further in vivo experiments suggest that the CuO2/ICG@CBSA can effectively eliminate wound infections and accelerate wound healing. The proposed three-in-one nanotherapeutics with O2/H2O2-self-supplied ROS generating capability show great potential in treating biofilm-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Here, we have developed an acidic biofilm microenvironment-responsive nanoplatform consisting of copper-dopped bovine serum albumin (CBSA) loaded with copper peroxide (CuO2) synthesized in situ and indocyanine green (ICG). The nanotherapeutics (CuO2/ICG@CBSA) are capable of releasing Cu2+ and H2O2 in an acidic environment, where Cu2+ catalyzes the conversion of H2O2 into •OH and consumes the overexpressed GSH to improve oxidative stress. With the aid of an 808 nm laser, ICG provides photonic hyperpyrexia for enhancing •OH production, and triggers O2-self-supplying 1O2 generation. CuO2/ICG@CBSA with laser irradiation displays photothermal-augmented multi-mode antibacterial and antibiofilm effect. Further in vivo experiments prove that CuO2/ICG@CBSA effectively eliminates wound infection and promotes wound healing. The proposed three-in-one nanotherapeutics show great potential in treating biofilm-associated bacterial infections.

4.
Chem Sci ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39176245

RESUMO

Quantum chemical calculations are reported for the complexes of alkaline earth metals AeOLi2 (Ae = Be-Ba) at the BP86-D3(BJ)/def2-QZVPP and CCSD(T)/def2-QZVPPQZVPP levels. The nature of the Ae-OLi2 bond has been analyzed with a variety of methods. The AeOLi2 molecules exhibit an unprecedented σ donor bond Ae→OLi2 where the (n)s2 lone-pair electrons of the Ae atom are donated to vacant O-Li2 antibonding orbitals having the largest coefficient at lithium. This is a covalent bond where the accumulation of the associated electronic charge is located at two positions above and below the Ae-OLi2 axis. The bifurcated component of orbital interactions is structurally related to the recently proposed collective bonding model, but exhibits a completely different type of bonding. The most stable isomer of AeOLi2 has a C 2v geometry and a singlet (1A1) electronic ground state. The bond dissociation energy (BDE) of the Ae-OLi2 bonds exhibits a zig-zag trend from BeOLi2 to BaOLi2, with BeOLi2 having the largest BDE (D e = 73.0 kcal mol-1) and MgOLi2 possessing the lowest BDE (D e = 42.3 kcal mol-1) at the CCSD(T) level. The calculation of the atomic partial charges by the Hirshfeld and Voronoi methods suggests that Be and Mg carry small negative charges in the lighter molecules whereas the heavier atoms Ca-Ba have small positive charges. In contrast, the NBO and QTAIM methods give positive charges for all Ae atoms that are larger for Ca-Ba than that calculated by the Hirshfeld and Voronoi approaches. The molecules AeOLi2 have large dipole moments where the negative end is at the Ae atom with the polarity Ae→OLi2. The largest dipole moments are predicted for the lighter species BeOLi2 and MgOLi2 and the smallest value is calculated for BaOLi2. The calculation of the vibrational spectra shows a significant red-shift toward lower wave numbers for the Ae-OLi2 stretching mode in comparison to diatomic AeO. Besides the Ae→OLi2 σ-donor bonds there are also three dative bonds due to Ae←OLi2 backdonation which consist of one σ bond and two π bonds. The appearance of strong Ae→OLi2 σ donation leads to quadruple bonds AeOLi2 in all systems AeOLi2, even for the lightest species with Ae = Be, Mg. The valence orbitals of Ca, Sr, and Ba, which are involved in the dative interactions, are the (n)s and (n-1)d AOs whereas Be and Mg use their (n)s and (n)p AOs. The EDA-NOCV results are supported by the AdNDP calculations which give four 2c-2e bonding orbitals. Three bonding orbitals have occupation numbers ∼2. One σ orbital has smaller occupation numbers between 1.32 and 1.73 due to the delocalization to the lithium atoms. The analysis of the electronic structure with the ELF method suggests multicenter bonds with mainly trisynaptic and tetrasynaptic basins, which also support the results of the EDA-NOCV calculations.

5.
Front Cell Dev Biol ; 12: 1422746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050892

RESUMO

Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and type 2 diabetes (T2DM) and PD are influenced by common genetic and environmental factors. Mitochondrial dysfunction and inflammation are common pathogenic mechanisms of both diseases. However, the close association between PD and T2DM and the specific relationship between them are not yet clear. This study aimed to reveal the specific connection between the two diseases by establishing a mouse model of comorbid PD and T2DM, as well as a Bv2 cell model. Methods: C57BL/6 mouse were used to construct a model of PD with T2DM using streptozotocin and rotenone, while Bv2 cells were used to simulate the microenvironment of PD and T2DM using rotenone and palmitate. Behavioral tests were conducted to assess any differences in motor and cognitive functions in mouse. Immunohistochemistry was used to analyze the number of dopaminergic neurons in the substantia nigra region of mouse. Western blotting was used to detect the expression levels of TH, P-NFκB, NFκB, Cyclic GMP-AMP synthase (cGAS), and Stimulator of interferon genes (STING) proteins in the substantia nigra region of mouse and Bv2 cells. qRT-PCR was used to analyze the expression levels of IL1ß, IL6, and TNF-α. Seahorse technology was used to assess mitochondrial function in Bv2 cells. Results: T2DM exacerbated the motor and cognitive symptoms in mouse with PD. This effect may be mediated by disrupting mitochondrial function in microglial cells, leading to damaged mtDNA leakage into the cytoplasm, subsequently activating the cGAS-STING pathway and downstream P-NFκB/NFκB proteins, triggering an inflammatory response in microglial cells. Microglial cells release inflammatory factors such as IL1ß, IL6, and TNF-α, exacerbating neuronal damage caused by PD. Conclusion: Our study results suggest that T2DM may exacerbate the progression of PD by damaging mitochondrial function, and activating microglial cell inflammation. The detrimental effects on Parkinson's disease may be achieved through the activating of the cGAS-STING protein pathway.

6.
Nutr Cancer ; : 1-11, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033400

RESUMO

This study aimed to explore the association between dietary intake of tomatoes and lycopene with all-cause and cancer mortality among US adults with diabetes. We hypothesized that a higher intake of tomato and lycopene is related to a reduced risk of all-cause and cancer mortality among adults with diabetes. This prospective study was conducted among 9213 US adults with diabetes using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016. Data on dietary intake of tomatoes and lycopene were obtained from two 24-h dietary recalls. Multivariate Cox proportional hazard models determined the associations between tomato/lycopene intake and mortality. A higher intake of tomatoes and lycopene was significantly associated with a lower risk of all-cause mortality (tomato: Q5 vs. Q1: HR = 0.68, 95% CI = 0.54-0.86, p = 0.001, p for trend = 0.001; lycopene: Q5 vs. Q1: HR = 0.78, 95% CI = 0.64-0.95, p = 0.013, p for trend = 0.006) after adjusting for all covariates. Compared with the lowest quintile of tomato and lycopene intake, the highest quintile was associated with a lower risk of cancer mortality (tomato: HR = 0.58, 95% CI = 0.35-0.96, p = 0.035; lycopene: HR = 0.63, 95% CI = 0.40-0.98, p = 0.043). Our study demonstrated that dietary intake of tomatoes and lycopene was significantly associated with a lower risk of all-cause mortality in US adults with diabetes. High consumption of tomatoes and lycopene was also related to reduced cancer mortality in US adults with diabetes.

7.
J Orthop Translat ; 47: 87-96, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007033

RESUMO

Background: Bone marrow mesenchymal stem cells (BMSCs) have immense potential in applications for the enhancement of tendon-bone (T-B) healing. Recently, it has been well-reported that skeletal stem cells (SSCs) could induce bone and cartilage regeneration. Therefore, SSCs represent a promising choice for cell-based therapies to improve T-B healing. In this study, we aimed to compare the therapeutic potential of SSCs and BMSCs for tendon-bone healing. Methods: SSCs and BMSCs were isolated by flow cytometry, and their proliferation ability was measured by CCK-8 assay. The osteogenic, chondrogenic, and adipogenic gene expression in cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair, and the mice were then randomly allocated to 4 groups: control group (tendon-bone interface without any treatment), hydrogel group (administration of blank hydrogel into the tendon-bone interface), hydrogel + BMSCs group (administration of hydrogel with BMSCs into the tendon-bone interface), and hydrogel + SSCs group (administration of hydrogel with SSCs into the tendon-bone interface). Histological staining, Micro-computed tomography (Micro-CT) scanning, biomechanical testing, and qRT-PCR were performed to assay T-B healing at 4 and 8 weeks after surgery. Results: SSCs showed more cell proportion, exhibited stronger multiplication capacity, and expressed higher osteogenic and chondrogenic markers and lower adipogenic markers than BMSCs. In vivo assay, the SSCs group showed a better-maturated interface which was characterized by richer chondrocytes and more proteoglycan deposition, as well as more newly formed bone at the healing site and increased mechanical properties when compared to other there groups. qRT-PCR analysis revealed that the healing interface in the SSCs group expressed more transcription factors essential for osteogenesis and chondrogenesis than the interfaces in the other groups. Conclusions: Overall, the results demonstrated the superior therapeutic potential of SSCs over BMSCs in tendon-bone healing. The translational potential of this article: This current study provides valuable insights that SSCs may be a more effective cell therapy for enhancing T-B healing compared to BMSCs.

8.
Biomimetics (Basel) ; 9(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39056854

RESUMO

The rise of large-scale Transformers has led to challenges regarding computational costs and energy consumption. In this context, spiking neural networks (SNNs) offer potential solutions due to their energy efficiency and processing speed. However, the inaccuracy of surrogate gradients and feature space quantization pose challenges for directly training deep SNN Transformers. To tackle these challenges, we propose a method (called LDD) to align ANN and SNN features across different abstraction levels in a Transformer network. LDD incorporates structured feature knowledge from ANNs to guide SNN training, ensuring the preservation of crucial information and addressing inaccuracies in surrogate gradients through designing layer-wise distillation losses. The proposed approach outperforms existing methods on the CIFAR10 (96.1%), CIFAR100 (82.3%), and ImageNet (80.9%) datasets, and enables training of the deepest SNN Transformer network using ImageNet.

9.
Int J Biol Macromol ; 273(Pt 2): 132945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851614

RESUMO

The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.


Assuntos
Lignina , Metais Pesados , Praguicidas , Metais Pesados/química , Lignina/química , Lignina/análogos & derivados , Praguicidas/química , Preparações de Ação Retardada , Plásticos/química , Poluentes do Solo/química , Agricultura/métodos , Quitosana/química , Fármacos Fotossensibilizantes/química , Biodegradação Ambiental , Solo/química
11.
Microbiol Spectr ; 12(8): e0411223, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38912806

RESUMO

In order to provide a highly feasible research pathway for the control of larch shoot blight, healthy larch branches and leaves were collected from 13 sampling sites in 8 provinces in China. The antagonistic endophytic bacteria obtained from the screening were used to carry out disease control experiments in potted seedlings. The safety evaluation test was conducted on the antagonistic bacteria. Subsequently, the strains with better preventive effect and high safety were identified by morphological and molecular methods. A total of 391 strains of endophytic bacteria were isolated from healthy larch branches and leaves. Seventy-eight strains of larch endophytic bacteria with antagonistic effect were obtained by primary sieving. Ten strains of endophytic bacteria with obvious antagonism were further obtained by secondary sieving, and all of them had an inhibition rate of more than 57%. Among them, strains YN 2, JL 6, NMG 23, and JL 54 showed the highest inhibition rate of 63.16%-65.08%, which was significantly different from the other treatments. The results of the pot test showed that 14 days after inoculation with the pathogen, strains YN 2 and JL 54 were more effective in the control of larch shoot blight, with the preventive effects reaching 57.7% and 50.0%, respectively. Strains JL 6 and JL 54 were biologically safe in the safety evaluation test. Therefore, strain JL 54 was selected for identification. It was identified as Bacillus amyloliquefaciens through morphological observation, 16S rDNA sequence, gyrB gene sequence and 16S rDNA-gyrB tandem feature sequence analysis. IMPORTANCE: Larch shoot blight is a widely distributed, damaging, and rapidly spreading fungal disease of forest trees that poses a serious threat to larch plantations. Endophytic bacteria have biological effects on host plants against pests and diseases, and they have a growth-promoting effect on plants. In this paper, we investigated for the first time the biocontrol effect of endophytic bacteria on larch shoot blight by screening endophytic bacteria with the function of antagonizing dieback fungi. Bacillus amyloliquefaciens JL 54 has a better prospect of biocontrol against larch shoot blight, which lays the foundation for the application of this bacterium in the future.


Assuntos
Antibiose , Endófitos , Larix , Doenças das Plantas , Endófitos/isolamento & purificação , Endófitos/classificação , Endófitos/fisiologia , Endófitos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Larix/microbiologia , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , China , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Filogenia
12.
BMC Genomics ; 25(1): 446, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714962

RESUMO

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Assuntos
Encéfalo , Redes Reguladoras de Genes , Inflamação , MicroRNAs , Estresse Oxidativo , RNA Mensageiro , Salinidade , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Encéfalo/metabolismo , Animais , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica , Ar , Transcriptoma
13.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38738611

RESUMO

We perform detailed potential energy surface explorations of BeM(CO)3- (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt) using both single-reference and multireference-based methods. The present results at the CASPT2(12,12)/def2-QZVPD//M06-D3/def2-TZVPPD level reveal that the global minimum of BeM(CO)3- (M = Co, Rh, Ir) and BePt(CO)3 is a C3v symmetric structure with an 1A1 electronic state, where Be is located in a terminal position bonded to M along the center axis. For other cases, the C3v symmetric structure is a low-lying local minimum. Although the present complexes are isoelectronic with the recently reported BFe(CO)3- complex having a B-Fe quadruple bond, radial orbital-energy slope (ROS) analysis reveals that the highest occupied molecular orbital (HOMO) in the title complexes is slightly antibonding in nature, which bars a quadruple bonding assignment. Similar weak antibonding nature of HOMO in the previously reported BeM(CO)4 (M = Ru, Os) complexes is also noted in ROS analysis. The bonding analysis through energy decomposition analysis in combination with the natural orbital for chemical valence shows that the bonding between Be and M(CO)3q (q = -1 for M = Co, Rh, Ir and q = 0 for M = Ni, Pd, Pt) can be best described as Be in the ground state (1S) interacting with M(CO)30/- via dative bonds. The Be(spσ) → M(CO)3q σ-donation and the complementary Be(spσ) ← M(CO)3q σ-back donation make the overall σ bond, which is accompanied by two weak Be(pπ) ← M(CO)3q π-bonds. These complexes represent triply bonded terminal beryllium in an unusual zero oxidation state.

14.
Adv Colloid Interface Sci ; 328: 103178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735101

RESUMO

Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.

15.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38632951

RESUMO

In cancer genomics, variant calling has advanced, but traditional mean accuracy evaluations are inadequate for biomarkers like tumor mutation burden, which vary significantly across samples, affecting immunotherapy patient selection and threshold settings. In this study, we introduce TMBstable, an innovative method that dynamically selects optimal variant calling strategies for specific genomic regions using a meta-learning framework, distinguishing it from traditional callers with uniform sample-wide strategies. The process begins with segmenting the sample into windows and extracting meta-features for clustering, followed by using a pre-trained meta-model to select suitable algorithms for each cluster, thereby addressing strategy-sample mismatches, reducing performance fluctuations and ensuring consistent performance across various samples. We evaluated TMBstable using both simulated and real non-small cell lung cancer and nasopharyngeal carcinoma samples, comparing it with advanced callers. The assessment, focusing on stability measures, such as the variance and coefficient of variation in false positive rate, false negative rate, precision and recall, involved 300 simulated and 106 real tumor samples. Benchmark results showed TMBstable's superior stability with the lowest variance and coefficient of variation across performance metrics, highlighting its effectiveness in analyzing the counting-based biomarker. The TMBstable algorithm can be accessed at https://github.com/hello-json/TMBstable for academic usage only.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Genoma , Algoritmos
16.
J Invest Dermatol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580105

RESUMO

IL-6 signaling plays a crucial role in the survival and metastasis of skin cancer. NEDD4L acts as a suppressor of IL-6 signaling by targeting GP130 degradation. However, the effects of the NEDD4L-regulated IL-6/GP130 signaling pathway on skin cancer remain unclear. In this study, protein expression levels of NEDD4L and GP130 were measured in tumor tissues from patients with cutaneous squamous cell carcinoma. Skin tumors were induced in wild-type and Nedd4l-knockout mice, and activation of the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway was detected. The results indicated a negative correlation between the protein expression levels of NEDD4L and GP130 in cutaneous squamous cell carcinoma tissues from patients. Nedd4l deficiency significantly promoted 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin tumorigenesis and benign-to-malignant conversion by activating the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway, which was abrogated by supplementation with the GP130 inhibitor SC144. Furthermore, our findings suggested that NEDD4L can interact with GP130 and promote its ubiquitination in skin tumors. In conclusion, our results indicate that NEDD4L could act as a tumor suppressor in skin cancer, and inhibition of GP130 could be a potential therapeutic method for treating this disease.

17.
J Sci Food Agric ; 104(9): 4977-4988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38567804

RESUMO

BACKGROUND: As the major protein (approximately 36%) in rice bran, globulin exhibits excellent foaming and emulsifying properties, endowing its useful application as a foaming and emulsifying agent in the food industry. However, the low water solubility restricts its commercial potential in industrial applications. The present study aimed to improve this protein's processing and functional properties. RESULTS: A novel covalent complex was fabricated by a combination of the Maillard reaction and alkaline oxidation using rice bran globulin (RBG), chitooligosaccharide (C), quercetin (Que) and resveratrol (Res). The Maillard reaction improved the solubility, emulsifying and foaming properties of RBG. The resultant glycosylated protein was covalently bonded with quercetin and resveratrol to form a (RBG-C)-Que-Res complex. (RBG-C)-Que-Res exhibited higher thermal stability and antioxidant ability than the native protein, binary globulin-chitooligosaccharide or ternary globulin-chitooligosaccharide-polyphenol (only containing quercetin or resveratrol) conjugates. (RBG-C)-Que-Res exerted better cytoprotection against the generation of malondialdehyde and reactive oxygen species in HepG2 cells, which was associated with increased activities of antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) through upregulated genes SOD1, CAT, GPX1 (i.e. gene for glutathione peroxidase-1), GCLM (i.e. gene for glutamate cysteine ligase modifier subunit), SLC1A11 (i.e. gene for solute carrier family 7, member 11) and SRXN1 (i.e. gene for sulfiredoxin-1). The anti-apoptotic effect of (RBG-C)-Que-Res was confirmed by the downregulation of caspase-3 and p53 and the upregulation of B-cell lymphoma-2 gene expression. CONCLUSION: The present study highlights the potential of (RBG-C)-Que-Res conjugates as functional ingredients in healthy foods. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Quitosana , Oligossacarídeos , Oryza , Quercetina , Resveratrol , Humanos , Quercetina/química , Quercetina/análogos & derivados , Oryza/química , Oligossacarídeos/química , Resveratrol/química , Resveratrol/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Células Hep G2 , Quitina/química , Quitina/análogos & derivados , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação de Maillard , Catalase/metabolismo , Catalase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética
18.
Chemphyschem ; 25(13): e202300816, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563655

RESUMO

The introduction of transition-metal doping has engendered a remarkable array of unprecedented boron motifs characterized by distinctive geometries and bonding, particularly those heretofore unobserved in pure boron clusters. In this study, we present a perfect (no defects) boron framework manifesting an inherently high-symmetry, bowl-like architecture, denoted as MB16 - (M=Sc, Y, La). In MB16 -, the B16 is coordinated to M atoms along the C5v-symmetry axis. The bowl-shaped MB16 - structure is predicted to be the lowest-energy structure with superior stability, owing to its concentric (2 π+10 π) dual π aromaticity. Notably, the C5v-symmetry bowl-like B16 - is profoundly stabilized through the doping of an M atom, facilitated by strong d-pπ interactions between M and boron motifs, in conjunction with additional electrostatic stabilization by an electron transfer from M to the boron motifs. This concerted interplay of covalent and electrostatic interactions between M and bowl-like B16 renders MB16 - a species of exceptional thermodynamic stability, thus making it a viable candidate for gas-phase experimental detection.

19.
Neuroscience ; 548: 1-8, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38685462

RESUMO

Neurodegenerative diseases, characterized by abnormal deposition of misfolded proteins, often present with progressive loss of neurons. Chronic neuroinflammation is a striking hallmark of neurodegeneration. Microglia, as the primary immune cells in the brain, is the main type of cells that participate in the formation of inflammatory microenvironment. Cytoplasmic free mitochondrial DNA (mtDNA), a common component of damage-associated molecular patterns (DAMPs), can activate the cGas/stimulator of interferon genes (STING) signalling, which subsequently produces type I interferon and proinflammatory cytokines. There are various sources of free mtDNA in microglial cytoplasm, but mitochondrial oxidative stress accumulation plays the vital role. The upregulation of cGas/STING pathway in microglia contributes to the abnormal and persistent microglial activation, accompanied by excessive secretion of neurotoxic inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which exacerbates the damage of neurons and promotes the development of neurodegeneration. Currently, novel therapeutic approaches need to be found to delay the progression of neurodegenerative disorders, and regulation of the cGas/STING signaling in microglia may be a potential target.


Assuntos
DNA Mitocondrial , Proteínas de Membrana , Microglia , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Nucleotidiltransferases , Transdução de Sinais , Microglia/metabolismo , Nucleotidiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Animais , Transdução de Sinais/fisiologia , DNA Mitocondrial/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
20.
Chemistry ; 30(34): e202400714, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622057

RESUMO

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA