Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Eur J Med Chem ; 277: 116734, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094275

RESUMO

Proteolysis targeting chimeras (PROTAC) are bifunctional chimeric molecules capable of directly degrading binding proteins through the ubiquitin-proteasome pathway. PROTACs have demonstrated significant potential in overcoming drug resistance and targeting previously untreatable targets. However, several limitations still need to be addressed, including their high molecular weight resulting in poor membrane permeability and bioavailability. In this study, we proposed that cancer-targeted penetrating peptides could enhance the cell permeability of PROTACs. We developed 26 novel targeted penetrating peptides for leukemia and lymphoma cells, among which C9C-f(3Bta) and Cyclo-C9C-R exhibited superior membrane permeability, targetability, and stability. By combining C9C-f(3Bta) and Cyclo-C9C-R with IMA-PROTAC, we effectively enhanced the anti-proliferative activity of IMA-PROTAC, facilitated degradation of Bcr-Abl protein in K562 cells, and reduced downstream STAT5 phosphorylation. Furthermore, the combined application promoted cell apoptosis while blocking G1 phase progression. HPLC-MRM-MS revealed that the combination of C9C-f(3Bta) or Cyclo-C9C-R with IMA-PROTAC significantly enhanced intracellular IMA-PROTAC content. In summary, our proof-of-concept study validated the hypothesis that combining PROTACs with targeted penetrating peptides can improve protein degradation efficiency as well as anti-proliferative capabilities.

2.
Cell Mol Biol Lett ; 29(1): 110, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153986

RESUMO

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS: To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS: Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION: PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.


Assuntos
Autofagia , Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas , Estresse Oxidativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Neoplasias Gástricas , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Autofagia/genética , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Estresse Oxidativo/genética , Linhagem Celular Tumoral , Camundongos , Progressão da Doença , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Masculino
3.
J Colloid Interface Sci ; 677(Pt A): 812-819, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121665

RESUMO

Aqueous zinc-ion batteries (AZIBs) have become a research hotspot, but the inevitable zinc dendrites and parasitic reactions in the zinc anode seriously hinder their further development. In this study, three covalent triazine frameworks (DCPY-CTF, CTF-1 and FCTF) have been synthesized and used as artificial protective coatings, in which the fluorinated triazine framework (FCTF) increases the zinc-philic site, thus better promoting dendritic free zinc deposition and inhibiting hydrogen evolution reactions. Excitingly, both experimental results and theoretical calculations indicate that the FCTF interface adjusts the deposition of Zn2+ along the (002) plane, effectively alleviating the formation of zinc dendrites. As expected, Zn@FCTF symmetric cells exhibit cycling stability of over 4000 h (0.25 mA cm-2), meanwhile Zn@FCTF//NHVO full cells provide a high specific capacity of 280 mAh/g at 1.0 A/g, which are superior to those of bare Zn anode. This work provides new insights for suppressing hydrogen evolution and promoting dendrite-free zinc deposition to construct highly stable and reversible AZIBs.

4.
Chem Biodivers ; : e202401689, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136520

RESUMO

Mesophotic coral ecosystems (MCEs), located at depths ranging from 30-150 m, host some of the most diverse yet least explored marine bioresources, particularly significant for the discovery of new bioactive molecules. The fungus Beauveria sp. NBUF147, associated with an Irciniidae sponge from the mesophotic zone at a depth of 82 m, underwent chemical investigation that led to the identification of one new sterol, beautoide A (1), and one reported sterol, 3ß,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (2). Their structures were determined from analysis of spectroscopic data and X-ray crystallography. Evaluation of biological activity in prednisolone-induced osteoporotic zebrafish showed that 1 was anti-osteoclastogenic in vivo at 3.0 µM.

5.
Hu Li Za Zhi ; 71(4): 104-111, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39084898

RESUMO

This article describes the application of transition theory to assist a family with an infant with congenital complex gastroschisis. The nursing period, from March 3, 2023 to May 9, 2023, encompassed care from hospitalization to discharge. The author employed transition theory as a guide and used physical assessments, observations, and interviews for data collection as well as behavioral processes records. The primary nursing problem was identified as "preparation for family operation process enhancement/child's congenital disease and complex care needs, and the family's response to the challenges of the disease and care adaptation." The three phases of nursing care were summarized as: (1) the family adjustment to uncertainty, (2) undertaking caregiving roles and responsibilities, and (3) role development and family reconnection. The author established specific goals for each phase and provided corresponding interventions for the family. In the first phase, the author guided the family in expressing their concerns, and offered personalized health education information as well as psychological support to help them understand the progression of their child's disease and alleviate related anxiety and confusion. In the second phase, the author offered sleep guidance and customized home care schedules to support coping skill development and role functioning. In the third phase, the family was encouraged to explore the meaning of life while accompanying their child's growth in order to achieve spiritual growth and deepen the reconnection within the family. Ultimately, the family strengthened their confidence and capabilities in caregiving and embraced optimism and expectations for the future, enabling them to adapt smoothly to life after their child's return home. When families are confronted with their child's diagnosis with a congenital disease, they often find themselves in a state of self-doubt and faced with continuous challenges. Nurses may employ transition theory throughout the nursing process to better understand and address the evolving needs of both children and their families during the transition phase. Furthermore, transition theory may be applied to help nurses better assess, plan, and care for their patients, which can enhance the capabilities of families and facilitate their successful navigation through the challenging transition journey.


Assuntos
Gastrosquise , Humanos , Gastrosquise/enfermagem , Gastrosquise/psicologia , Lactente , Família/psicologia , Adaptação Psicológica
6.
J Cancer ; 15(14): 4700-4716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006073

RESUMO

Background: Long non-coding RNA (lncRNA), a crucial regulator in breast cancer (BC) development, is intricately linked with cellular senescence. However, there is a lack of cellular senescence-related lncRNAs (CSRLs) signature to evaluate the prognosis of BC patients. Methods: Correlation analysis was conducted to identify lncRNAs associated with cellular senescence. Subsequently, a CSRL signature was crafted in the training cohort. The model's accuracy was evaluated through survival analysis and receiver operating characteristic curves. Furthermore, prognostic nomograms amalgamating cellular senescence and clinical characteristics were devised. Tumor microenvironment and checkpoint disparities were compared between low-risk and high-risk groups. The correlation between these signatures and treatment response in BC patients was also investigated. Finally, functional experiments were conducted for validation. Results: A signature comprising nine CSRLs was devised, which demonstrated adept prognostic capability in BC patients. Functional enrichment analysis revealed that tumor and immune-related pathways were predominantly enriched. Compared to the low-risk group, the high-risk group could benefit more from immunotherapy and certain chemotherapeutic agents. The expression of the 9 CSRLs was validated through in vitro experiments in different subtypes of BC cell lines and tissues. AC098484.1 was specifically verified for its association with senescence-associated secretory phenotypes. Conclusion: The CSRLs signature emerges as a promising prognostic biomarker for BC, with implications for immunological studies and treatment strategies. AC098484.1 has potential relevance in the treatment of BC cell senescence, and these findings improve the clinical treatment levels for BC patients.

7.
Nat Nanotechnol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020102

RESUMO

Gouty arthritis is a chronic and progressive disease characterized by high urate levels in the joints and by an inflammatory immune microenvironment. Clinical data indicate that urate reduction therapy or anti-inflammatory therapy alone often fails to deliver satisfactory outcomes. Here we have developed a smart biomimetic nanosystem featuring a 'shell' composed of a fusion membrane derived from M2 macrophages and exosomes, which encapsulates liposomes loaded with a combination of uricase, platinum-in-hyaluronan/polydopamine nanozyme and resveratrol. The nanosystem targets inflamed joints and promotes the accumulation of anti-inflammatory macrophages locally, while the uricase and the nanozyme reduce the levels of urate within the joints. Additionally, site-directed near-infrared irradiation provides localized mild thermotherapy through the action of platinum and polydopamine, initiating heat-induced tissue repair. Combined use of these components synergistically enhances overall outcomes, resulting in faster recovery of the damaged joint tissue.

8.
Int J Biol Macromol ; 277(Pt 2): 134188, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084428

RESUMO

The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.

9.
Biomater Sci ; 12(15): 3805-3825, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38967109

RESUMO

Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.


Assuntos
Doenças Cardiovasculares , Nanomedicina Teranóstica , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/tratamento farmacológico , Animais , Polímeros/química , Polímeros Responsivos a Estímulos/química , Espécies Reativas de Oxigênio/metabolismo , Portadores de Fármacos/química , Nanoestruturas/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
10.
Pancreas ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38829570

RESUMO

OBJECTIVE: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is primarily composed of cancer-associated fibroblasts (CAFs) and immune cells. Gremlin1 (Grem1) is a profibrogenic factor that promotes tumorigenesis in several cancers. However, the role of Grem1 in the PDAC microenvironment is not adequately defined. METHODS: We correlated Grem1 levels with activated stroma and immune cells in human PDAC using The Cancer Genome Atlas (TCGA) RNA-sequencing data and characterized the expression of Grem1 transcripts and isoforms in pancreatic cell lines and PDAC tissues. We assessed the role of Grem1 in the microenvironment by in vitro studies. RESULTS: Grem1 expression is associated with an activated stroma and increased M1 and M2 macrophages. Only full length Grem1 variant 1 and isoform 1 were detectable in human pancreatic cells, and remarkably high levels of Grem1 were observed in pancreatic fibroblasts (P < 0.05). Immunohistochemistry detected Grem1 protein in PDAC tumor cells and stromal cells, which correlated with infiltrating macrophages in PDAC tumors. Grem1 knockdown in CAFs suppressed transforming growth factor (TGF)-ß-induced extracellular matrix proteins (P < 0.05). Grem1 recombinant protein treatment in vitro increased M1 and M2 macrophages (P < 0.05). CONCLUSIONS: Grem1 acts as a profibrogenic factor in the PDAC microenvironment via modulation of fibroblasts and macrophages. Grem1 may have the potential to be developed as a therapeutic target for PDAC.

11.
Ophthalmol Ther ; 13(7): 1909-1924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743158

RESUMO

INTRODUCTION: To evaluate the intraocular differences in optical coherence tomography (OCT)-based macular curvature index (MCI) among children with anisomyopia and to investigate the relationship between MCI and the macular microvasculature. METHODS: Fifty-two schoolchildren with anisometropia > 2.00 D were enrolled and underwent comprehensive examinations including cycloplegic refraction, axial length (AL), and swept source OCT/OCT angiography. OCT-based MCIs were determined from horizontal and vertical B-scans by a customized curve fitting model in MATLAB R2022 at 1-mm-, 3-mm-, and 6-mm-diameter circles at fovea. Characteristics and topographic variation of MCI was analyzed, and the relationships with microvascularity and its associated factors were investigated. RESULTS: MCI achieved high reliability and repeatability. There were overall larger MCIs in the more myopic eyes than the less myopic eyes in 1-mm-, 3-mm-, and 6-mm-diameter circles at fovea (all p < 0.001). For the topographic variation, horizontal MCI was significantly greater than vertical MCI (all p < 0.001), and was the largest in 6-mm circle, followed by 3-mm and 1-mm circles. Stronger correlation of horizontal MCI with myopic severity than vertical MCI was found. Partial Pearson's correlation found MCI was negatively associated with deep capillary plexus (DCP) vessel density (p = 0.016). Eyes with a higher MCI in a 6-mm circle were more likely to have longer AL (p < 0.001), lower DCP vessel density (p = 0.037), and thinner choroidal thickness (ChT) (p = 0.045). CONCLUSION: Larger MCI was found in the more myopic eyes of children with anisomyopia and was significantly associated with smaller DCP density, suggesting that MCI was an important indicator of myopia-related retinal microvascularity change, and it could be a valuable metric for myopia assessment in children.

12.
Stroke Vasc Neurol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806205

RESUMO

BACKGROUND: Recently, computational fluid dynamics (CFD) has been used to simulate blood flow of symptomatic intracranial atherosclerotic stenosis (sICAS) and investigate the clinical implications of its haemodynamic features, which were systematically reviewed in this study. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Meta-analysis of Observational Studies in Epidemiology statements, we searched PubMed and Embase up to March 2024 and screened for articles reporting clinical implications of haemodynamic parameters in sICAS derived from CFD models. RESULTS: 19 articles met the inclusion criteria, all studies recruiting patients from China. Most studies used CT angiography (CTA) as the source image for vessel segmentation, and generic boundary conditions, rigid vessel wall and Newtonian fluid assumptions for CFD modelling, in patients with 50%-99% sICAS. Pressure and wall shear stress (WSS) were quantified in almost all studies, and the translesional changes in pressure and WSS were usually quantified with a poststenotic to prestenotic pressure ratio (PR) and stenotic-throat to prestenotic WSS ratio (WSSR). Lower PR was associated with more severe stenosis, better leptomeningeal collaterals, prolonged perfusion time and internal borderzone infarcts. Higher WSSR and other WSS measures were associated with positive vessel wall remodelling, regression of luminal stenosis and artery-to-artery embolism. Lower PR and higher WSSR were both associated with the presence and severity of cerebral small vessel disease. Moreover, translesional PR and WSSR were promising predictors for stroke recurrence in medically treated patients with sICAS and outcomes after acute reperfusion therapy, which also provided indicators to assess the effects of stenting treatment on focal haemodynamics. CONCLUSIONS: CFD is a promising tool in investigating the pathophysiology of ICAS and in risk stratification of patients with sICAS. Future studies are warranted for standardisation of the modelling methods and validation of the simulation results in sICAS, for its wider applications in clinical research and practice.

13.
J Transl Med ; 22(1): 507, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802851

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Assuntos
Fibronectinas , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-myc , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Proteólise , Camundongos Nus , Sequência de Bases , Movimento Celular/genética , Feminino , Camundongos
14.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724505

RESUMO

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Assuntos
Citoplasma , Inibidor de NF-kappaB alfa , NF-kappa B , Proteínas Tirosina Quinases , Fator de Transcrição RelA , Animais , Fosforilação , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Camundongos , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , NF-kappa B/metabolismo , Citoplasma/metabolismo , Proteólise , Núcleo Celular/metabolismo , Replicação Viral , Células HEK293 , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Serina-Treonina Quinases
15.
J Chem Inf Model ; 64(11): 4500-4510, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38745385

RESUMO

Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to ß-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer ß-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-ß-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.


Assuntos
Calcitonina , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica , Humanos , Calcitonina/química , Calcitonina/metabolismo , Substituição de Aminoácidos , Mutação
16.
MedComm (2020) ; 5(5): e555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706741

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.

17.
Adv Healthc Mater ; 13(16): e2303612, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38564883

RESUMO

Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Nanomedicina Teranóstica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/terapia , Animais , Nanomedicina Teranóstica/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico
18.
Angew Chem Int Ed Engl ; 63(24): e202401943, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594205

RESUMO

Electrochemical C-N coupling reaction based on carbon dioxide and nitrate have been emerged as a new "green synthetic strategy" for the synthesis of urea, but the catalytic efficiency is seriously restricted by the inherent scaling relations of adsorption energies of the active sites, the improvement of catalytic activity is frequently accompanied by the decrease in selectivity. Herein, a doping engineering strategy was proposed to break the scaling relationship of intermediate binding and minimize the kinetic barrier of C-N coupling. A thus designed SrCo0.39Ru0.61O3-δ catalyst achieves a urea yield rate of 1522 µg h-1 mgcat. -1 and faradic efficiency of 34.1 % at -0.7 V versus reversible hydrogen electrode. A series of characterizations revealed that Co doping not only induces lattice distortion but also creates rich oxygen vacancies (OV) in the SrRuO3. The oxygen vacancies weaken the adsorption of *CO and *NH2 intermediates on the Co and Ru sites respectively, and the strain effects over the Co-Ru dual sites promoting the occurrence of C-N coupling of the two monomers instead of selective hydrogenating to form by-products. This work presents an insight into molecular coupling reactions towards urea synthesis via the doping engineering on SrRuO3.

19.
Aging (Albany NY) ; 16(8): 7437-7447, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663913

RESUMO

BACKGROUND: NADPH oxidase 4 (NOX4) has been proven to be associated with the prognosis of tumors in multiple cancers and can serve as a potential immunotherapy target to provide new treatment options for various tumors. In this study, our aim is to conduct an in-depth investigation of NOX4 across a range of cancer types to determine the relationship between NOX4 and tumors. METHODS: Utilizing large-scale transcriptomic and clinical data from public databases, a systematic examination of NOX4 expression patterns was performed in pan-cancer cohorts. Survival analysis, methylation analysis, and correlation studies were employed to assess the diagnostic and prognostic significance of NOX4 in diverse cancer types. Additionally, an exploration of the relationship between NOX4 expression and immune infiltration across various tumors was conducted. RESULTS: The analyses unveiled a consistent upregulation of NOX4 expression in multiple cancer types relative to normal tissues, indicating its potential as a universal cancer biomarker. Elevated NOX4 expression significantly correlated with poor overall survival in several cancers. Furthermore, the study demonstrated a robust correlation between NOX4 expression and immune cell infiltration, signifying its involvement in the modulation of the tumor microenvironment. CONCLUSIONS: This study imparts valuable insights into the potential applications of NOX4 in cancer research, highlighting its significance as a multifaceted biomarker with diagnostic, prognostic, and immunomodulatory implications across diverse malignancies.


Assuntos
Biomarcadores Tumorais , NADPH Oxidase 4 , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
20.
Curr Med Chem ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38549533

RESUMO

Leukemia is a malignant clonal disease of hematopoietic stem cells, which accounts for about 3% of the total incidence of tumors and is particularly prevalent among children and adolescents. It mainly includes four types of leukemia, namely ALL, AML, CLL, and CML, which are often aggressive and challenging diseases to treat. Several signaling pathways are dysregulated in almost all types of leukemia, such as JAK, PI3K, and MAPK, and others are dysregulated in specific types of leukemia, like Wnt/ß-catenin, Hedgehog, FLT3, Bcr-Abl, and so on. Many efforts have been devoted to developing small molecule inhibitors targeting protein kinases involved in leukemia-related signaling pathways. In this review, we focus on the study of signaling pathways and protein kinases that developed as targets of anti-leukemia drug therapy and report the research progress of relevant small molecule kinase inhibitors over the last five years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA