RESUMO
We aimed to build and validate a computed tomography (CT)-based deep learning nomogram for discriminating granulomas from lung adenocarcinomas. A retrospective study of 1,159 patients with solitary lung nodules from three institutions in China who underwent pre-operative lung CT scans was performed. The patients were divided into one training, one validation, one test, and two external validation cohorts. Deep learning features were extracted from CT images. The least absolute shrinkage and selection operator (LASSO) regression model was used for dimension reduction and feature selection. Logistic regression analysis showed that age, gender, intranodular and perinodular (IPN) features, and adipose features were the significant predictors of malignancy presence (all p < 0.05). The nomogram was built by incorporating these four factors and achieved better diagnostic accuracy than the single-factor model. The nomogram demonstrates satisfactory discrimination and calibration. In addition, decision curve analysis revealed the considerable clinical usefulness of the nomogram.
RESUMO
Currently, research on Ag nanoparticles (AgNPs) predominantly focuses on UV/visible photodetection and UV emission, seemingly overlooking the significance of Ag in enhancing deep ultraviolet photon detection. In this work, (In0.3Ga0.7)2O3 thin films were fabricated by plasma-enhanced chemical vapor deposition. Due to the unique photoabsorbance characteristic and better interaction with photons of small-sized AgNPs, they effectively suppress the UVB absorbance caused by energy band engineering in the (In0.3Ga0.7)2O3 thin film while enhancing photoabsorbance in UVC due to the surface plasmon effect. Therefore, under the synergistic effect of enhanced photon absorbance and hot electron transfer, the performance of the detector is significantly improved, and its responsivity (R), external quantum efficiency, and detectivity (D*) are 193 mA/W, approximately 100%, and 1014 Jones, respectively, at a bias of -6 V. The fast response time and decay time are 634.6 and 194.1 ms, respectively; the rapid decay facilitated by AgNPs is attributed to the increased indirect recombination rate. AgNPs exhibit excellent narrowband response characteristics and absorbance properties in specific wavelength bands for the InGaO photodetector. This research lays the foundation for the practical application of localized surface plasmon resonance-enhanced photon-sensing capabilities.
RESUMO
Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often arises in the context of chronic liver disease, such as hepatitis B or C infection, and cirrhosis. Advanced unresectable HCC (uHCC) presents significant treatment challenges due to its advanced stage and inoperability. One efficient treatment method for advanced uHCC is the use of hepatic arterial infusion chemotherapy (HAIC) combined with transcatheter arterial embolization (TAE). Patients and Methods: In this study, we conducted a retrospective collection of clinical data, including basic information, radiological data, and blood test parameters, for patients with advanced uHCC who underwent TAE + HAIC treatment from August 2020 to February 2023. A total of 743 cases involving 262 patients were included. Ultimately, the covariates included in the analysis were the Child-Pugh score, extrahepatic metastasis, tumor number, tumor size, and treatment method. Results: In the study, we performed univariable and multivariable analysis on 23 clinical factors that were screened by LASSO regression, indicating that the five variables aforementionedly were identified as independent factors influencing patient prognosis. Then we developed a nomogram of the sensitive model and calculated concordance indices of prognostic survival models. Conclusion: Based on the uHCC patient cohort, we have developed a prognostic model for OS in patients who received TAE + HAIC treatment. This model can accurately predict OS and has the potential to assist in personalized clinical decision-making.
RESUMO
Large metacarpal and phalangeal bone defects are a hot topic for orthopedic surgeons due to its high clinical incidence, disability rate, and postsurgical amputation rate, along with its difficult treatment, long treatment course, high cost, and poor effect, all of which have a negative impact on the appearance and function of the patient's hands. There are currently a variety of treatment options for large metacarpal and phalangeal bone defects, each with its own benefits and drawbacks. However, there is no treatment method capable of perfectly resolving all the problems of patients with these defects. In this paper, the authors introduce several common plans for and progress of large metacarpal and phalangeal bone defect treatment.
RESUMO
BACKGROUND: 3-Hydroxybutyrate, also called ß-hydroxybutyrate, is a significant constituent of ketone bodies. Previous observational and experimental studies have suggested that ketogenic diet, especially 3-hydroxybutyrate, may have a protective effect against cardiovascular disease. However, the relationship between ketone bodies, especially 3-hydroxybutyrate, and aortic dissection remains uncertain. MATERIALS AND METHODS: Publicly accessible data from genome-wide association study (GWAS) was utilized to obtain information on ketone bodies, including 3-hydroxybutyrate, acetoacetate and acetone as exposure respectively, while GWAS data on aortic dissection was used as outcome. Subsequently, two-sample Mendelian randomization (MR) analysis was conducted to examine the potential relationship between ketone bodies and aortic dissection. Then, reverse and multivariate Mendelian randomization analyses were performed. Additionally, sensitivity tests were conducted to assess the robustness of MR study. RESULTS: The inverse-variance weighted (IVW) method of Mendelian randomization analysis of gene prediction observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection (OR 0.147, 95% CI 0.053-0.410). Furthermore, consistent findings were obtained through the implementation of the weighted median, simple mode, Mendelian randomization-Egger (MR-Egger), and weighted mode methods. After adjusting acetoacetate (OR 0.143, 95% CI 0.023-0.900) or acetone (OR 0.100, 95% CI 0.025-0.398), MR analysis of gene prediction still observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection. No indications of heterogeneity or pleiotropy among the SNPs were detected. CONCLUSION: The findings from the MR analysis demonstrated that genetically predicted 3-hydroxybutyrate exhibits a protective effect against aortic dissection.
RESUMO
As classical soft materials, conductive hydrogels have attracted wide attention in the field of strain sensors due to their unique flexibility and conductivity. However, there are still challenges in developing conductive hydrogels with comprehensive mechanical strength, self-healing ability and sensitive sensing properties. In this paper, a novel PAV/CMGG hydrogel was prepared by a simple one-pot method through the introduction of 1-vinyl-3-butylimidazolium bromide (VBIMBr), acrylic acid (AA), carboxymethyl guar gum (CMGG) and AlCl3. The coordination bond between Al3+ and -COO- groups on PAA and CMGG, the hydrogen bond between PAA and CMGG, and the electrostatic interaction between [VBIM]+ and -COO- endow the hydrogel with good mechanical properties, self-recovery ability, fatigue resistance and great self-healing properties. PAV/CMGG hydrogel had good conductivity of 2.31 S/m which could successfully light up the bulb. The hydrogel as the strain sensor had not only a wide strain sensing capability (strain ranging from 0 to 800 %), but also a high strain sensitivity (gauge factor (GF) = 28.50 for the strain ranging from 600 to 800 %). This study can provide inspiration for the construction of new high-performance flexible sensors.
Assuntos
Galactanos , Hidrogéis , Líquidos Iônicos , Mananas , Gomas Vegetais , Gomas Vegetais/química , Galactanos/química , Mananas/química , Hidrogéis/química , Líquidos Iônicos/química , Condutividade ElétricaRESUMO
Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.
Assuntos
Bloqueadores dos Canais de Cálcio , Cristalização , Redes Neurais de Computação , Nifedipino , Solubilidade , Eletricidade Estática , Nifedipino/química , Cristalização/métodos , Bloqueadores dos Canais de Cálcio/químicaRESUMO
BACKGROUND: In observational and experimental studies, diabetes has been reported as a protective factor for aortic dissection. 3-Hydroxybutyrate, a key constituent of ketone bodies, has been found to favor improvements in cardiovascular disease. However, whether the protective effect of diabetes on aortic dissection is mediated by 3-hydroxybutyrate is unclear. We aimed to investigate the causal effects of diabetes on the risk of aortic dissection and the mediating role of 3-hydroxybutyrate in them through two-step Mendelian randomization. MATERIALS AND METHODS: We performed a two-step Mendelian randomization to investigate the causal connections between diabetes, 3-hydroxybutyrate, and aortic dissection and calculate the mediating effect of 3-hydroxybutyrate. Publicly accessible data for Type 1 diabetes, Type 2 diabetes, dissection of aorta and 3-hydroxybutyrate were obtained from genome-wide association studies. The association between Type 1 diabetes and dissection of aorta, the association between Type 2 diabetes and dissection of aorta, and mediation effect of 3-hydroxybutyrate were carried out separately. RESULTS: The IVW method showed that Type 1 diabetes was negatively associated with the risk of aortic dissection (OR 0.912, 95% CI 0.836-0.995), The weighted median, simple mode and weighted mode method showed consistent results. The mediated proportion of 3-hydroxybutyrate on the relationship between Type 1 diabetes and dissection of aorta was 24.80% (95% CI 5.12-44.47%). The IVW method showed that Type 2 diabetes was negatively associated with the risk of aortic dissection (OR 0.763, 95% CI 0.607-0.960), The weighted median, simple mode and weighted mode method showed consistent results. 3-Hydroxybutyrate does not have causal mediation effect on the relationship between Type 2 diabetes and dissection of aorta. CONCLUSION: Mendelian randomization study revealed diabetes as a protective factor for dissection of aorta. The protective effect of type 1 diabetes on aortic dissection was partially mediated by 3-hydroxybutyrate, but type 2 diabetes was not 3-hydroxybutyrate mediated.
Assuntos
Ácido 3-Hidroxibutírico , Aneurisma Aórtico , Dissecção Aórtica , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Dissecção Aórtica/genética , Dissecção Aórtica/epidemiologia , Dissecção Aórtica/etiologia , Ácido 3-Hidroxibutírico/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco , Aneurisma Aórtico/genética , Aneurisma Aórtico/epidemiologia , Aneurisma Aórtico/etiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Medição de Risco , Fatores de Proteção , Fenótipo , Biomarcadores/sangue , Análise de MediaçãoRESUMO
A scheme is proposed to achieve significantly enhanced quantum estimation of optorotational-coupling (ORC) strength by coupling a driven auxiliary cavity to a Laguerre-Gaussian (L-G) rotational cavity, where the ORC originates from the exchange of orbital angular momentum between a L-G light and rotational mirror. The results indicate that, by appropriately designing the auxiliary-cavity mechanism, the estimation error of the ORC parameter is significantly reduced, and revealing the estimation precision has a much stronger thermal noise and dissipation robustness in comparison with the unassisted case. Our study paves the way toward achieving high-precision quantum sensors.
RESUMO
Rising wide bandgap semiconductor gallium oxide (Ga2O3) displays huge potential in performing solar-blind photodetection, with constraint in narrow detection wavebands in nature, whereas bandgap modulation through the introduction of exotic atoms into Ga2O3 has an essential effect on the tunable performance of photodetectors and the detection waveband. Here, a novel method for the preparation of (InxGa1-x)2O3 alloy films is proposed, and the continuous tuning of the bandgap in the range of 3.70-4.99 eV is achieved by varying the In-doping content. Alloy-based metal-semiconductor-metal photodetectors were fabricated, achieving a peak responsivity between 254 and 295 nm, superior performance compared to Ga2O3 photodetectors, with a photo-to-dark current ratio as high as 106, and a better optical image-sensing capability. This study offers new insight for high-performance detection of full solar-blind waveband ultraviolet light.
RESUMO
BACKGROUND: Differences in the preoperative characteristics and weight loss outcomes after sleeve gastrectomy (SG) between patients with familial aggregation of obesity (FAO) and patients with sporadic obesity (SO) have not been elucidated. AIM: To explore the impact of SG on weight loss and the alleviation of obesity-related comorbidities in individuals with FAO. METHODS: A total of 193 patients with obesity who underwent SG were selected. Patients with FAO/SO were matched 1:1 by propensity score matching and were categorized into 4 groups based on the number of first-degree relatives with obesity (1SO vs 1FAO, 2SO vs 2FAO). The baseline characteristics, weight loss outcomes, prevalence of obesity-related comorbidities and incidence of major surgery-related complications were compared between groups. RESULTS: We defined FAO as the presence of two or more first-degree relatives with obesity. Patients with FAO did not initially show significant differences in baseline data, short-term postoperative weight loss, or obesity-related comorbidities when compared to patients with SO preoperatively. However, distinctions between the two groups became evident at the two-year mark, with statistically significant differences in both percentage of total weight loss (P = 0.006) and percentage of excess weight loss (P < 0.001). The FAO group exhibited weaker remission of type 2 diabetes mellitus (T2DM) (P = 0.031), hyperlipidemia (P = 0.012), and non-alcoholic fatty liver disease (NAFLD) (P = 0.003) as well as a lower incidence of acid reflux (P = 0.038). CONCLUSION: FAO patients is associated with decreased mid-to-long-term weight loss outcomes; the alleviation of T2DM, hyperlipidemia and NAFLD; and decreased incidence of acid reflux postoperatively.
Assuntos
Gastrectomia , Redução de Peso , Humanos , Masculino , Feminino , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Adulto , Resultado do Tratamento , Pessoa de Meia-Idade , Estudos Retrospectivos , Diabetes Mellitus Tipo 2/cirurgia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Comorbidade , Obesidade/cirurgia , Obesidade/diagnóstico , Obesidade/complicações , Obesidade/epidemiologia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações , Cirurgia Bariátrica/métodos , Pontuação de Propensão , Hepatopatia Gordurosa não Alcoólica/cirurgia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , IncidênciaRESUMO
BACKGROUND: Grasping the underlying mechanisms of Alzheimer's disease (AD) is still a work in progress, and existing diagnostic techniques encounter various obstacles. Therefore, the discovery of dependable biomarkers is essential for early detection, tracking the disease's advancement, and steering treatment strategies. AIM: To explore the diagnostic potential of serum CXCL12, sCD22, Lp-PLA2, and their ratios in AD, aiming to enhance early detection and inform targeted treatment strategies. METHODS: The study was conducted in Dongying people's Hospital from January 2021 to December 2022. Participants included 60 AD patients (AD group) and 60 healthy people (control group). Using a prospective case-control design, the levels of CXCL12, sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD. The differences between the two groups were analyzed by statistical methods, and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis. RESULTS: Serum CXCL12 levels were higher in the AD group (47.2 ± 8.5 ng/mL) than the control group (32.8 ± 5.7 ng/mL, P < 0.001), while sCD22 levels were lower (14.3 ± 2.1 ng/mL vs 18.9 ± 3.4 ng/mL, P < 0.01). Lp-PLA2 levels were also higher in the AD group (112.5 ± 20.6 ng/mL vs 89.7 ± 15.2 ng/mL, P < 0.05). Significant differences were noted in CXCL12/sCD22 (3.3 vs 1.7, P < 0.001) and Lp-PLA2/sCD22 ratios (8.0 vs 5.2, P < 0.05) between the groups. Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD, with area under the curves ranging from 0.568 to 0.787. CONCLUSION: Serum CXCL12 and Lp-PLA2 levels were significantly increased, while sCD22 were significantly decreased, as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22, are closely related to the onset of AD. These biomarkers and their ratios can be used as potential diagnostic indicators for AD, providing an important clinical reference for early intervention and treatment.
RESUMO
Biosignals collected by wearable devices, such as electrocardiogram and photoplethysmogram, exhibit redundancy and global temporal dependencies, posing a challenge in extracting discriminative features for blood pressure (BP) estimation. To address this challenge, we propose HGCTNet, a handcrafted feature-guided CNN and transformer network for cuffless BP measurement based on wearable devices. By leveraging convolutional operations and self-attention mechanisms, we design a CNN-Transformer hybrid architecture to learn features from biosignals that capture both local information and global temporal dependencies. Then, we introduce a handcrafted feature-guided attention module that utilizes handcrafted features extracted from biosignals as query vectors to eliminate redundant information within the learned features. Finally, we design a feature fusion module that integrates the learned features, handcrafted features, and demographics to enhance model performance. We validate our approach using two large wearable BP datasets: the CAS-BP dataset and the Aurora-BP dataset. Experimental results demonstrate that HGCTNet achieves an estimation error of 0.9 ± 6.5 mmHg for diastolic BP (DBP) and 0.7 ± 8.3 mmHg for systolic BP (SBP) on the CAS-BP dataset. On the Aurora-BP dataset, the corresponding errors are -0.4 ± 7.0 mmHg for DBP and -0.4 ± 8.6 mmHg for SBP. Compared to the current state-of-the-art approaches, HGCTNet reduces the mean absolute error of SBP estimation by 10.68% on the CAS-BP dataset and 9.84% on the Aurora-BP dataset. These results highlight the potential of HGCTNet in improving the performance of wearable cuffless BP measurements.
Assuntos
Determinação da Pressão Arterial , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Determinação da Pressão Arterial/métodos , Determinação da Pressão Arterial/instrumentação , Pressão Sanguínea/fisiologia , Algoritmos , Adulto , MasculinoRESUMO
Photocatalysis has the advantages of practical, sustainable and environmental protection, so it plays a significant role in energy transformation and environmental utilization. CeO2 has attracted widespread attention for its unique 4 f electrons, rich defect structures, high oxygen storage capacity and great chemical stability. In this paper, we review the structure of CeO2 and the common methods for the preparation of CeO2-based composites in the first part. In particular, we highlight the co-precipitation method, template method, and sol-gel method methods. Then, in the second part, we introduce the application of CeO2-based composites in photocatalysis, including photocatalytic CO2 reduction, hydrogen production, degradation, selective organic reaction, and photocatalytic nitrogen fixation. In addition, we discuss several modification techniques to improve the photocatalytic performance of CeO2-based composites, such as elemental doping, defect engineering, constructing heterojunction and morphology regulation. Finally, the challenges faced by CeO2-based composites are analyzed and their development prospects are prospected. This review provides a systematic summary of the recent advance of CeO2-based composites in the field of photocatalysis, which can provide useful references for the rational design of efficient CeO2-based composite photocatalysts for sustainable development.
RESUMO
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Bulbo Olfatório , Bainha de Mielina , Neurônios , Transplante de Células/métodos , Regeneração Nervosa , NeurogliaRESUMO
OBJECTIVE: To investigate the effect of miR-125b on T cell activation in patients with aplastic anemia (AA) and its molecular mechanism. METHODS: A total of 30 AA patients were enrolled in department of hematology, Binzhou Medical University Hospital from January 2018 to October 2021, as well as 15 healthy individuals as healthy control (HC) group. Peripheral blood mononuclear cells (PBMCs) were isolated, in which the levels of miR-125b and B7-H4 mRNA were detected by RT-qPCR. Immunomagnetic beads were used to separate naive T cells and non-naive T cells from AA patients and healthy people to detect the levels of miR-125b and B7-H4 mRNA. Lentivirus LV-NC inhibitor and LV-miR-125b inhibitor were transfected into cells, and T cell activation was detected by flow cytometry. The dual-luciferase reporter gene assay was used to detect the targetting relationship between miR-125b and B7-H4. RT-qPCR and Western blot were used to detect the levels of miR-125b, CD40L, ICOS, IL-10 mRNA and B7-H4 protein. RESULTS: Compared with HC group, the expression of miR-125b was up-regulated but B7-H4 mRNA was down-regulated in PBMCs of AA patients (P <0.05), and the proportions of CD4+CD69+ T cells and CD8+CD69+ T cells in PBMCs of AA patients were higher (P <0.05). The expression of miR-125b was significantly up-regulated but B7-H4 mRNA was down-regulated in both naive T cells and non-naive T cells of AA patients (P <0.05), and non-naive T cells was more significant than naive T cells (P <0.05). Compared with NC inhibitor group, the expression of miR-125b was significantly decreased, the expression level of CD69 on CD4+ and CD8+ T cells in PBMCs was also significantly decreased, while the luciferase activity was significantly increased after co-transfection of miR-125b inhibitor and B7-H4-3'UTR-WT in the miR-125b inhibitor group (P <0.05). Compared with NC inhibitor group, the mRNA and protein levels of B7-H4 were significantly increased in the miR-125b inhibitor group (P <0.05). Compared with miR-125b inhibitor+shRNA group, the expression levels of CD69 on CD4+ and CD8+ T cells were significantly increased, and the levels of CD40L, ICOS and IL-10 mRNA were also significantly increased in the miR-125b inhibitor+sh-B7-H4 group (P <0.05). CONCLUSION: MiR-125b may promote T cell activation by targetting B7-H4 in AA patients.
Assuntos
Anemia Aplástica , Ativação Linfocitária , MicroRNAs , Linfócitos T , Humanos , Anemia Aplástica/genética , Ligante de CD40/metabolismo , Interleucina-10 , Leucócitos Mononucleares/metabolismo , Luciferases , MicroRNAs/genética , RNA Mensageiro/metabolismo , Linfócitos T/metabolismoRESUMO
Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.
RESUMO
In this work, a solar-blind UV metal-semiconductor Schottky photodiode array is constructed by using metalorganic chemical vapor deposition grown ε-Ga2O3 thin film, possessing high-performance and self-powered characteristics, toward dual-mode (self-powered and biased modes) binary light communication. For the array unit, the responsivity, specific detectivity, and external quantum efficiency are 30.8â A/W/6.3 × 10-2â A/W, 1.51 × 104%/30.9%, 1.28 × 1014/5.4 × 1012 Jones for biased (-10â V)/self-powered operation. The rise and decay time are 0.19 and 7.96â ms at biased modes, respectively, suggesting an ability to trace fast light signal. As an array, the deviation of photocurrent is only 4.3%, highlighting the importance of accurate information communication. Through certain definition of "1/0" binary digital information, the "NY" and "IC" characters are communicated to illustrate the self-powered and biased modes by right of ASCII codes, based on the prepared ε-Ga2O3 solar-blind UV Schottky photodiode array. This work made dual-mode binary deep-UV light communication come true and may well guide the development of UV optoelectronics.
RESUMO
As an ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has been extensively applied in solar-blind photodetectors (PDs) owing to the absorbance cut-off wavelength of shorter than 280 nm, and the optimized technologies of detection performance is seriously essential for its further usages. Herein, a feasible thermal reorder engineering method was performed through annealing Ga2O3films in vacuum, O2and oxygen plasma atmospheres, realizing to tune solar-blind photosensing performance of Ga2O3PDs. Thermal treatment, in fact a crystal reorder process, significantly suppressed the noise in Ga2O3-based PDs and enhanced the photo-sensitivity, with the dark current decreasing from 154.63 pA to 269 fA and photo-to-dark current ratio magically raising from 288 to 2.85 × 104. This achievement is dependent of energy-band modulation in Ga2O3semiconductor, that is certified by first-principles calculation. Additionally, annealing in oxygen atmospheres notably reduces the concentration of oxygen vacancies in the surface of films, thereby improving the performance of the PDs; the oxygen vacancy is extremely concerned in oxide semiconductors in the view of physics of surface defects. In all, this work could display a promising guidance for modulating the performance of PDs based on wide bandgap oxide semiconductor, especially for hot Ga2O3issue.
RESUMO
This research focuses on the evolution of mechanical behavior of bimodal mixtures undergoing compaction and diametrical compression. The clusters were built and discrete element method (DEM) was used to investigate the densification process and micromechanics of bimodal mixtures. Additionally, a more comprehensive investigate of the respective breakage of the bimodal mixtures has been carried out. On this basis, qualitative and quantitative analysis of the compressive force, force chain, contact bonds and density field evolution characteristics of the clusters are investigated during the compression process. The entire loading process of the clusters is divided into three stages: rearrangement, breakage and elastic-plastic deformation. Additionally, there are differences in the evolution of micromechanics behavior of different particles in the bimodal mixture, with pregelatinized starch breakage and deformation occurring before microcrystalline cellulose. With the tablet deformation, the fragmentation process of the tablet started at the point of contact and extended toward the center, and the curvature of the force chain increased. This approach may potentially hold a valuable new information relevant to important transformation forms batch manufacturing to advanced manufacturing for the oral solid dosage form.