Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Rev Lett ; 130(24): 240202, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390410

RESUMO

Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum computation. However, existing examples of contextuality in high-dimensional systems lack the necessary robustness required in experiments. Here, we address this problem by identifying a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system. At first glance, this contextuality is the single-system version of multipartite Bell nonlocality taken to an extreme form. What is interesting is that the single-system version achieves the same degree of contextuality but uses a Hilbert space of lower dimension. That is, contextuality "concentrates" as the degree of contextuality per dimension increases. We show the practicality of this result by presenting an experimental test of contextuality in a seven-dimensional system. By simulating sequences of quantum ideal measurements with destructive measurements and repreparation in an all-optical setup, we report a violation of 68.7 standard deviations of the simplest case of the noncontextuality inequalities identified. Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford algebra, and its role in quantum computation.

2.
Phys Rev Lett ; 130(20): 200202, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267573

RESUMO

Einstein-Podolsky-Rosen (EPR) steering is a type of characteristic nonlocal correlation and provides an important resource in quantum information tasks, especially in view of its asymmetric property. Although plenty of works on EPR steering have been reported, the study of non-Markovian evolution of EPR steering, in which the interactions between the quantum system and surrounding environment are taken into consideration, still lacks intuitive experimental evidence. Here, we experimentally observe the non-Markovian evolution of EPR steering including its sudden death and revival processes, during which the degree of memory effect plays a key role in the recovery of steering. Additionally, a strict unsteerable feature is sufficiently verified during the non-Markovian evolution within multisetting measurements. This Letter, revealing the whole evolution of EPR steering under the non-Markovian process, provides incisive insight into the applications of EPR steering in quantum open systems.

3.
Nat Mater ; 22(4): 489-494, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959503

RESUMO

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

4.
Light Sci Appl ; 12(1): 18, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36599829

RESUMO

As a fundamental characteristic of physical entities, wave‒particle duality describes whether a microscopic entity exhibits wave or particle attributes depending on the specific experimental setup. This assumption is premised on the notion that physical properties are inseparable from the objective carrier. However, after the concept of the quantum Cheshire cats was proposed, which makes the separation of physical attributes from the entity possible, the premise no longer holds. Furthermore, an experimental demonstration of the separation of the wave and particle attributes inspired by this scenario remains scarce. In this work, we experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept for the first time. By applying a weak disturbance to the evolution of the system, we achieve an effect similar to the quantum Cheshire cat and demonstrated the separation of the wave and particle attributes via the extraction of weak values. Our work provides a new perspective for the in-depth understanding of wave‒particle duality and promotes the application of weak measurements in fundamentals of quantum mechanics.

5.
Sci Adv ; 9(4): eabp8943, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696496

RESUMO

Exceptional points (EPs), at which more than one eigenvalue and eigenvector coalesce, are unique spectral features of non-Hermiticity (NH) systems. They exist widely in open systems with complex energy spectra. We experimentally demonstrate the appearance of paired EPs in a periodical-driven degenerate optical cavity along the synthetic orbital angular momentum dimension with a tunable parameter. The complex-energy band structures and the key features of EPs, i.e., their bulk Fermi arcs, parity-time symmetry breaking transition, energy swapping, and half-integer band windings, are directly observed by detecting the wavefront angle-resolved transmission spectrum. Our results demonstrate the flexibility of using the photonic synthetic dimensions to implement NH systems beyond their geometric dimension and EP-based sensing.

6.
Nano Lett ; 22(24): 9943-9950, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36507869

RESUMO

Spin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa. The zero-field-splitting of the divacancy spins increases linearly with pressure with a slope of 25.1 MHz/GPa, which is almost two-times larger than that of nitrogen-vacancy centers in diamond. The corresponding pressure sensing sensitivity is about 0.28 MPa/Hz-1/2. The coherent control of divacancy demonstrates that coherence time decreases as pressure increases. Based on these, the pressure-induced magnetic phase transition of Nd2Fe14B sample at high pressures was detected. These experiments pave the way to use divacancy in quantum technologies such as pressure sensing and magnetic detection at high pressures.

7.
Opt Lett ; 47(11): 2734-2737, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648917

RESUMO

The weak measurement wavefront sensor detects the phase gradient of light like the Shack-Hartmann sensor does. However, the use of one thin birefringent crystal to displace light beams results in a wavelength-dependent phase difference between the two polarization components, which limits the practical application. Use of a Savart plate, which consists of two such crystals, can compensate for the phase difference and realize achromatic wavefront sensing when combined with an achromatic retarder. We discuss the spatial resolution of the sensor and experimentally reconstruct a wavefront modulated by a pattern. Then we obtain the Zernike coefficients with three different wavelengths before and after modulation. Our work makes this new wavefront sensor more applicable to actual tasks like biomedical imaging.

8.
Natl Sci Rev ; 9(5): nwab122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35668749

RESUMO

Spin defects in silicon carbide (SiC) with mature wafer-scale fabrication and micro/nano-processing technologies have recently drawn considerable attention. Although room-temperature single-spin manipulation of colour centres in SiC has been demonstrated, the typically detected contrast is less than 2[Formula: see text], and the photon count rate is also low. Here, we present the coherent manipulation of single divacancy spins in 4H-SiC with a high readout contrast ([Formula: see text]) and a high photon count rate (150 kilo counts per second) under ambient conditions, which are competitive with the nitrogen-vacancy centres in diamond. Coupling between a single defect spin and a nearby nuclear spin is also observed. We further provide a theoretical explanation for the high readout contrast by analysing the defect levels and decay paths. Since the high readout contrast is of utmost importance in many applications of quantum technologies, this work might open a new territory for SiC-based quantum devices with many advanced properties of the host material.

9.
Proc Natl Acad Sci U S A ; 119(21): e2119765119, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594392

RESUMO

SignificanceQuantum coherence has a fundamentally different origin for nonidentical and identical particles since for the latter a unique contribution exists due to indistinguishability. Here we experimentally show how to exploit, in a controllable fashion, the contribution to quantum coherence stemming from spatial indistinguishability. Our experiment also directly proves, on the same footing, the different role of particle statistics (bosons or fermions) in supplying coherence-enabled advantage for quantum metrology. Ultimately, our results provide insights toward viable quantum-enhanced technologies based on tunable indistinguishability of identical building blocks.

10.
Nat Commun ; 13(1): 2040, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440661

RESUMO

Synthetic dimensions based on particles' internal degrees of freedom, such as frequency, spatial modes and arrival time, have attracted significant attention. They offer ideal large-scale lattices to simulate nontrivial topological phenomena. Exploring more synthetic dimensions is one of the paths toward higher dimensional physics. In this work, we design and experimentally control the coupling among synthetic dimensions consisting of the intrinsic photonic orbital angular momentum and spin angular momentum degrees of freedom in a degenerate optical resonant cavity, which generates a periodically driven spin-orbital coupling system. We directly characterize the system's properties, including the density of states, energy band structures and topological windings, through the transmission intensity measurements. Our work demonstrates a mechanism for exploring the spatial modes of twisted photons as the synthetic dimension, which paves the way to design rich topological physics in a highly compact platform.

11.
Phys Rev Lett ; 128(12): 120402, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394318

RESUMO

Einstein-Podolsky-Rosen (EPR) steering, a category of quantum nonlocal correlations describing the ability of one observer to influence another party's state via local measurements, is different from both entanglement and Bell nonlocality by possessing an asymmetric property. For multipartite EPR steering, the monogamous situation, where two observers cannot simultaneously steer the state of the third party, has been investigated rigorously both in theory and experiment. In contrast to the monogamous situation, the shareability of EPR steering in reduced subsystems allows the state of one party to be steered by two or more observers and thus reveals more configurations of multipartite EPR steering. However, the experimental implementation of such a kind of shareability has still been absent until now. Here, in an optical experiment, we provide a proof-of-principle demonstration of the shareability of EPR steering without the constraint of monogamy in a three-qubit system. Moreover, based on the reduced bipartite EPR steering detection results, we verify the genuine three-qubit entanglement results. This work provides a complementary viewpoint for understanding multipartite EPR steering and has potential applications in many quantum information protocols, such as multipartite entanglement detection, quantum cryptography, and the construction of quantum networks.

12.
Opt Lett ; 46(21): 5352-5355, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724473

RESUMO

The task of wavefront sensing is to measure the phase of the optical field. Here, we demonstrate that the widely used Shack-Hartmann wavefront sensor detects the weak value of transverse momentum, usually achieved by the method of quantum weak measurement. We extend its input states to partially coherent states and compare it with the weak measurement wavefront sensor, which has a higher spatial resolution but a smaller dynamic range. Since weak values are commonly used in investigating fundamental quantum physics and quantum metrology, our work would find essential applications in these fields.

13.
Nat Commun ; 12(1): 3223, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050146

RESUMO

Optically addressable solid-state color center spin qubits have become important platforms for quantum information processing, quantum networks and quantum sensing. The readout of color center spin states with optically detected magnetic resonance (ODMR) technology is traditionally based on Stokes excitation, where the energy of the exciting laser is higher than that of the emission photons. Here, we investigate an unconventional approach using anti-Stokes excitation to detect the ODMR signal of silicon vacancy defect spin in silicon carbide, where the exciting laser has lower energy than the emitted photons. Laser power, microwave power and temperature dependence of the anti-Stokes excited ODMR are systematically studied, in which the behavior of ODMR contrast and linewidth is shown to be similar to that of Stokes excitation. However, the ODMR contrast is several times that of the Stokes excitation. Coherent control of silicon vacancy spin under anti-Stokes excitation is then realized at room temperature. The spin coherence properties are the same as those of Stokes excitation, but with a signal contrast that is around three times greater. To illustrate the enhanced spin readout contrast under anti-Stokes excitation, we also provide a theoretical model. The experiments demonstrate that the current anti-Stokes excitation ODMR approach has promising applications in quantum information processing and quantum sensing.

14.
Phys Rev Lett ; 126(17): 170505, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988432

RESUMO

Masking of quantum information spreads it over nonlocal correlations and hides it from the subsystems. It is known that no operation can simultaneously mask all pure states [Phys. Rev. Lett. 120, 230501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.230501], so in what sense is quantum information masking useful? Here, we extend the definition of quantum information masking to general mixed states, and show that the resource of maskable quantum states is far more abundant than the no-go theorem seemingly suggests. Geometrically, the simultaneously maskable states lays on hyperdisks in the state hypersphere, and strictly contains the broadcastable states. We devise a photonic quantum information masking machine using time-correlated photons to experimentally investigate the properties of qubit masking, and demonstrate the transfer of quantum information into bipartite correlations and its faithful retrieval. The versatile masking machine has decent extensibility, and may be applicable to quantum secret sharing and fault-tolerant quantum communication. Our results provide some insights on the comprehension and potential application of quantum information masking.

16.
J Integr Neurosci ; 20(1): 43-53, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33834690

RESUMO

The cingulo-opercular network (CON), dorsal attention network (DAN), and ventral attention network (VAN) are prominently activated during attention tasks. The function of these task-positive networks and their interplay mechanisms in attention is one of the central issues in understanding how the human brain manipulates attention to better adapt to the external environment. This study aimed to clarify the CON, DAN, and VAN's functional hierarchy by assessing causal interactions. Functional magnetic resonance imaging (fMRI) data from human participants performing a visual-spatial attention task and correlating Granger causal influences with behavioral performance revealed that CON exerts behavior-enhancing influences upon DAN and VAN, indicating a higher level of CON in top-down attention control. By contrast, the VAN exerts a behavior-degrading influence on CON, indicating external disruption of the CON's control set.


Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
17.
Opt Lett ; 45(23): 6410-6413, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258824

RESUMO

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I, which enables teleportation with fidelities above the classical threshold. The results open the way to viable indistinguishability-enhanced quantum information processing.

18.
Nat Commun ; 11(1): 3006, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541843

RESUMO

Intuition suggests that an object should carry all of its physical properties. However, a quantum object may not act in such a manner-it can temporarily leave some of its physical properties where it never appears. This phenomenon is known as the quantum Cheshire cat effect. It has been proposed that a quantum object can even permanently discard a physical property and obtain a new one it did not initially have. Here, we observe this effect experimentally by casting non-unitary imaginary-time evolution on a photonic cluster state to extract weak values, which reveals the counterintuitive phenomenon that two photons exchange their spins without classically meeting each other. A phenomenon presenting only in the quantum realm, our results are in stark contrast with the perception of inseparability between objects and properties, and shed new light on comprehension of the ontology of observables.

19.
Phys Rev Lett ; 124(22): 223601, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567924

RESUMO

Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins in silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration sixfold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature, and the coherence time T_{2} can be reached to around 17.1 µs. Furthermore, an investigation of fluorescence properties of single NV centers shows that they are room-temperature photostable single-photon sources at telecom range. Taking advantage of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.

20.
Opt Lett ; 44(21): 5254-5257, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674981

RESUMO

Here we present a design of a traveling-wave optical cavity containing four identical ellipsoidal mirrors arranged in a square. The cavity proves to support more than 21 Laguerre-Gaussian modes simultaneously. There is a polarization splitting in the cavity that can be used for polarization filtering with a high isolation level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA