Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Anal Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990044

RESUMO

Dihydro-nicotinamide adenine dinucleotide (NADH) detection is crucial since it is a vital coenzyme in organism metabolism. Compared to the traditional method based on natural NADH oxidase (NOX), nanozymes with multienzyme-like activity can catalyze multistage reactions in a singular setup, simplifying detection processes and enhancing sensitivity. In this study, an innovative NADH detection method was developed using iron-doped carbon (Fe@C) nanozyme synthesized from metal-organic frameworks with in situ reduced Pt clusters. This nanozyme composite (Pt/Fe@C) demonstrated dual NOX and peroxidase-like characteristics, significantly enhancing the catalytic efficiency and enabling NADH conversion to NAD+ and H2O2 with subsequent detection. The collaborative research involving both experimental and theoretical simulations has uncovered the catalytic process and the cooperative effect of Fe and Pt atoms, leading to enhanced oxygen adsorption and activation, as well as a decrease in the energy barrier of the key step in the H2O2 decomposition process. These findings indicate that the catalytic performance of Pt/Fe@C in NOX-like and POD-like reactions can be significantly improved. The colorimetric sensor detects NADH with a limit of detection as low as 0.4 nM, signifying a breakthrough in enzyme-mimicking nanozyme technology for precise NADH measurement.

2.
Clin Exp Med ; 24(1): 149, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967892

RESUMO

Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.


Assuntos
Bibliometria , Síndrome do Intestino Irritável , MicroRNAs , Humanos , Síndrome do Intestino Irritável/genética , MicroRNAs/genética
3.
Anal Biochem ; 694: 115605, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38992485

RESUMO

Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Dysregulated tryptophan (TRP) metabolites serve as significant indicators for endogenous immune turnovers and abnormal metabolism in the intestinal microbiota during sepsis. Therefore, a high coverage determination of TRP and its metabolites in sepsis is beneficial for the diagnosis and prognosis of sepsis, as well as for understanding the underlying mechanism of sepsis development. However, similar structures in TRP metabolites make it challenging for separation and metabolite identification. Here, high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was developed to determine TRP metabolites in rat serum. The first-order derivative spectrophotometry of targeted metabolites in the serum was investigated and proved to be promising for chromatographic peak annotation across different columns and systems. The established method separating the targeted metabolites was optimized and validated to be sensitive and accurate. Application of the method revealed dysregulated TRP metabolites, associated with immune disorders and NAD + metabolism in both the host and gut flora in septic rats. Our findings indicate that the derivative spectrophotometry-assisted method enhances metabolite identifications for the chromatographic systems based on DAD detectors and holds promise for precision medicine in sepsis.

4.
Front Microbiol ; 15: 1422335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989029

RESUMO

In China, the porcine reproductive and respiratory syndrome virus (PRRSV) has undergone several variations over the decades and contributed to the diversity of the clinical epidemic PRRSV strains. This has complicated the prevention and control of PRRS. In particular, the efficacy of the currently available commercial vaccines against the highly pathogenic NADC34-like strains is unclear. Therefore, the objective of this study was to evaluate the protection efficacy of three commercial PRRS modified-live virus (MLV) vaccines derived from classical PRRS VR2332 MLV and R98 MLV against challenge with a heterologous NADC34-like PRRSV strain, JS2021NADC34, which has high pathogenicity in pigs. PRRSV- and antibody-free piglets were immunized with the PRRS VR2332 MLV vaccine or either of two R98 MLV vaccines (from different manufacturers) and were challenged with the JS2021NADC34 strain 28 days after immunization. Rectal temperature, clinical symptoms, viremia and viral shedding from the nose, gross lesions in the thymus and lungs, microscopic lesions and viral distribution in the lungs, as well as the humoral immune response and mortality rates were recorded over a 14-day post-challenge period. The results showed that PRRS VR2332 MLV had better efficacy against the JS2021NADC34 challenge than PRRS R98 MLV, with vaccinated piglets in the former group showing transient and mild symptoms, mild pathological lesions in the lungs, mild thymic atrophy, and low viral levels in sera and nasal swabs, as well as better growth performance and a 100% survival rate. In contrast, two PRRS R98 MLVs exhibited limited efficacy against the JS2021NADC34 challenge, with the piglets in two R98 groups showing obvious clinical symptoms and pathological changes in the lungs and thymus; moreover, there were two deaths caused by PRRS in two R98 groups, respectively. Despite this, the mortality rate was lower than that of the unvaccinated piglets that were challenged with JS2021NADC34. The cumulative results demonstrate that PRRS VR2332 MLV was partly effective against the highly pathogenic PRRSV NADC34-like strain based on the observations over the 14-day post-challenge period. Thus, it might be a viable option among the commercially available vaccines for control of NADC34-like virus infections in swine herds.

5.
Cell Death Differ ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918619

RESUMO

Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor, with its biological characteristics intricately linked to the activation of oncogenes. This research specifically explored CCDC137, a molecule within the CCDC family exhibiting the closest association with HCC. Our investigation aimed to unravel the role, underlying mechanisms, and potential therapeutic implications of CCDC137 in the context of HCC. We observed a close correlation between elevated CCDC137 expression and poor prognosis in HCC patients, along with a promotive effect on HCC progression in vitro and in vivo. Mechanistically, we identified LZTS2, a negative regulator of ß-catenin, as the binding protein of CCDC137. CCDC137 facilitated K48-linked poly-ubiquitination of LZTS2 at lysine 467 via recruiting E3 ubiquitin ligase ß-TrCP in the nucleus, triggering AKT phosphorylation and activation of ß-catenin pathway. Moreover, the 1-75 domain of CCDC137 was responsible for the formation of the CCDC137-LZTS2-ß-TrCP complex. Subsequently, designed peptides targeting the 1-75 domain of CCDC137 to disrupt CCDC137-LZTS2 interaction demonstrated efficacy in inhibiting HCC progression. This promising outcome was further supported by HCC organoids and patient-derived xenograft (PDX) models, underscoring the potential clinical utility of the peptides. This study elucidated the mechanism of the CCDC137-LZTS2-ß-TrCP protein complex in HCC and offered clinically significant therapeutic strategies targeting this complex.

6.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848854

RESUMO

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Assuntos
Variação Antigênica , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Glicosilação , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Galinhas/virologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Influenza Aviária/prevenção & controle , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/imunologia , Epitopos/imunologia , Epitopos/química , Antígenos Virais/imunologia , Antígenos Virais/genética
7.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793422

RESUMO

Aero-engines can be exposed to One Engine Inoperative (OEI) conditions during service, and the resulting overheating effect may significantly impact their structural integrity and flight safety. This paper focuses on the influence of overheating on the microstructural evolution and tensile properties of the GH4720Li alloy, a nickel-based polycrystalline superalloy commonly used in turbine disks. Based on the typical OEI operating conditions of a real aero-engine, a series of non-isothermal high-temperature tensile tests involving an OEI stage of 800 °C were conducted. The effects of OEI-induced overheating on the microstructure and tensile properties of the GH4720Li alloy were investigated. The results showed that, after OEI treatment, the primary γ' phase in this alloy was partially dissolved. The GH4720Li superalloy also exhibited numerous microcracks at the grain boundaries, resulting in complex effects on its tensile properties. The alloy's yield strength and ultimate tensile strength were slightly decreased, whereas its ductility decreased considerably. The OEI-induced embrittlement phenomenon was mainly caused by the non-uniform distribution of the tertiary γ' phase within grains. The formation of microcracks nucleated at the interfaces between the primary γ' precipitates and γ matrix phase was another key factor.

8.
Microb Cell Fact ; 23(1): 142, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773481

RESUMO

The Porcine epidemic diarrhea virus (PEDV) presents a substantial risk to the domestic pig industry, resulting in extensive and fatal viral diarrhea among piglets. Recognizing the mucosal stimulation triggered by PEDV and harnessing the regulatory impact of lactobacilli on intestinal function, we have developed a lactobacillus-based vaccine that is carefully designed to elicit a strong mucosal immune response. Through bioinformatics analysis, we examined PEDV S proteins to identify B-cell linear epitopes that meet the criteria of being non-toxic, soluble, antigenic, and capable of neutralizing the virus. In this study, a genetically modified strain of Lactobacillus mucosae G01 (L.mucosae G01) was created by utilizing the S layer protein (SLP) as a scaffold for surface presentation. Chimeric immunodominant epitopes with neutralizing activity were incorporated at various sites on SLP. The successful expression of SLP chimeric immunodominant epitope 1 on the surface of L.mucosae G01 was confirmed through indirect immunofluorescence and transmission electron microscopy, revealing the formation of a transparent membrane. The findings demonstrate that the oral administration of L.mucosae G01, which expresses the SLP chimeric immunodominant gene epitope1, induces the production of secreted IgA in the intestine and feces of mice. Additionally, there is an elevation in IgG levels in the serum. Moreover, the levels of cytokines IL-2, IL-4, IFN-γ, and IL-17 are significantly increased compared to the negative control group. These results suggest that L. mucosae G01 has the ability to deliver exogenous antigens and elicit a specific mucosal immune response against PEDV. This investigation presents new possibilities for immunoprophylaxis against PEDV-induced diarrhea.


Assuntos
Epitopos de Linfócito B , Lactobacillus , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Lactobacillus/imunologia , Camundongos Endogâmicos BALB C , Suínos , Feminino , Vacinas Virais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Glicoproteínas de Membrana
9.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793655

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China.


Assuntos
Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Animais , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , China/epidemiologia , Prevalência , Variação Genética , Fazendas , RNA Viral/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-38659341

RESUMO

Metal-free carbon catalysts (MFCCs) are one of the commonly used catalysts for electrocatalytic two-electron oxygen reduction (2e- ORR) synthesis of hydrogen peroxide (H2O2). Oxygen doping is an effective means to improve the performance of MFCCs, but the performance of oxygen-doped carbon catalysts is still not high enough, and the contribution of different oxygen functional groups (OFGs) to the catalytic performance is still inconclusive. In this paper, carbon-based catalysts with different oxygen contents and ratios of OFGs were prepared, and the high 2e- ORR activity of COOH + C-OH was demonstrated by combining the results of experiments and theoretical calculations. The prepared oxygen-doped carbon-based catalyst C-0.1M80 achieved an onset potential of 0.795 V (vs RHE), a selectivity of up to 98.2% (0.6 V vs RHE), and a H2O2 oxidation current of 1.33 mA cm-2 (0.5 V vs RHE) in a rotating ring-disk electrode test (0.1 M KOH solution), which was an outstanding performance in MFCCs. In a solid electrolyte flow cell, C-0.1M80 achieved a Faraday efficiency of 97.5% at 200 mA cm-2 with a corresponding H2O2 production rate of 123.7 mg cm-2 h-1. In addition, a flow cell stability test was performed at an industrial current density (100 mA cm-2) with an astounding 200 h of uninterrupted operation, also achieving an outstanding average Faradaic efficiency (95.8%).

11.
Life Sci ; 346: 122631, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621585

RESUMO

AIMS: Cellular senescence (CS) represents an intracellular defense mechanism responding to stress signals and can be leveraged as a "vulnerability" in cancer treatment. This study aims to construct a CS atlas for gastric cancer (GC) and uncover potential therapeutics for GC patients. MATERIALS AND METHODS: 38 senescence-associated regulators with prognostic significance in GC were obtained from the CellAge database to construct Gastric cancer-specific Senescence Score (GSS). Using eXtreme Sum algorism, GSS-based drug repositioning was conducted to identify drugs that could antagonize GSS in CMap database. In vitro experiments were conducted to test the effect of combination of palbociclib and exisulind in eliminating GC cells. KEY FINDINGS: Patients with high GSS exhibited CS-related features, such as CS markers upregulation, adverse clinical outcomes and hypomethylation status. scRNA-seq data showed malignant cells with high GSS exhibited enhanced senescence state and more immunosuppressive signals such as PVR-CD96 compared with malignant cells with low GSS. In addition, the GSS-High cancer associated fibroblasts might secrete cytokines and chemokines such as IL-6, CXCL1, CXCL12, and CCL2 to from an immunosuppressive microenvironment, and GSS could serve as an indicator for immunotherapy resistance. Exisulind exhibited the greatest potential to reverse GSS. In vitro experiments demonstrated that exisulind could induce apoptosis and suppress the proliferation of palbociclib-induced senescent GC cells. SIGNIFICANCE: Overall, GSS offers a framework for better understanding of correlation between senescence and GC, which might provide new insights into the development of novel therapeutics in GC.


Assuntos
Senescência Celular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Senescência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Piridinas/farmacologia , Prognóstico , Microambiente Tumoral/efeitos dos fármacos , Piperazinas/farmacologia , Proliferação de Células/efeitos dos fármacos
12.
Phytomedicine ; 128: 155512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Artrite Experimental , Artrite Reumatoide , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Naftoquinonas , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Artrite Experimental/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley
13.
Front Nutr ; 11: 1276497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501068

RESUMO

Background: Cholelithiasis, commonly referred to as gallstones, is a prevalent medical condition influenced by a combination of genetic factors, lifestyle choices, and dietary habits. Specific food items have been associated with an increased susceptibility to cholelithiasis, whereas others seem to offer a protective effect against its development. Methods: In this study, we conducted a Mendelian randomization (MR) analysis using a large-scale genetic dataset comprising individuals with European ancestry to explore the potential causal relationship between diet and cholelithiasis. The analysis incorporated 17 food-related variables, which were considered as potential factors influencing the occurrence of this condition. Results: Our findings indicate that a higher consumption of cooked vegetables, dried fruit, and oily fish is associated with a reduced risk of cholelithiasis. Conversely, a higher consumption of lamb is associated with an increased risk of developing the condition. Importantly, these associations proved robust to sensitivity and heterogeneity tests, and the pleiotropic test results further supported the hypothesis of a causal relationship between diet and cholelithiasis. Conclusion: Through our study, we provide compelling evidence for the existence of a causal relationship between diet and cholelithiasis. Adopting a dietary pattern enriched with cooked vegetables, dried fruit, and oily fish, while minimizing lamb intake, may contribute to the prevention of cholelithiasis. Recognizing diet as a modifiable risk factor in the prevention and management of this condition is of paramount importance, and our study offers valuable insights in this regard.

14.
Int J Surg ; 110(5): 2865-2873, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329065

RESUMO

BACKGROUND: Radical inguinal lymph node dissection (rILND) is the most available treatment to cure penile cancer (PC) with limited inguinal-confined disease. However, guidelines regarding acceptable boundaries of rILND are controversial, and consensus is lacking. The authors aimed to standardize the surgical boundaries of rILND with definite pathological evidence and explore the distribution pattern of inguinal lymph nodes (ILNs) in PC. METHODS: A total of 414 PC patients from two centers who underwent rILND were enrolled. The ILN distribution was divided into seven zones anatomically for pathological examination. Student's t test and Kaplan-Meier survival analysis were used. RESULTS: ILNs displayed a funnel-shaped distribution with high density in superior regions. ILNs and metastatic nodes are present anywhere within the radical boundaries. Positive ILNs were mainly concentrated in zone I (51.7%) and zone II (41.3%), but there were 8.7% and 12.3% in inferior zones V and VI, respectively, and 7.1% in the deep ILNs. More importantly, a single positive ILN and first-station positive zone was detected in all seven regions. Single positive ILNs were located in zones I through VI in 40.4%, 23.6%, 6.7%, 18.0%, 4.5%, and 1.1%, respectively, and 5.6% presented deep ILN metastasis directly. CONCLUSIONS: The authors established a detailed ILN distribution map and displayed lymphatic drainage patterns with definite pathological evidence using a large cohort of PC patients. Single positive ILNs and first-station metastatic zones were observed in any region, even directly with deep ILN metastasis. Only rILND can ensure tumor-free resection without the omission of positive nodes.


Assuntos
Canal Inguinal , Excisão de Linfonodo , Linfonodos , Metástase Linfática , Neoplasias Penianas , Humanos , Masculino , Neoplasias Penianas/cirurgia , Neoplasias Penianas/patologia , Excisão de Linfonodo/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Canal Inguinal/cirurgia , Canal Inguinal/patologia , Linfonodos/patologia , Linfonodos/cirurgia , Adulto , Estudos de Coortes
15.
BMC Gastroenterol ; 24(1): 87, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408917

RESUMO

BACKGROUND/AIMS: Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease. The imbalance of Th17/Treg cells has been reported in PBC patients. Low-dose IL-2 can alleviate disease severity through modulating CD4 + T cell subsets in patients with autoimmune diseases. Hence, the present study aimed to examine the effects and mechanism of low-dose IL-2 in PBC mouse models. METHODS: PBC models were induced in female C57BL/6 mice by two immunizations with 2OA-BSA at two-week intervals, and poly I: C every three days. PBC mouse models were divided into the IL-2 treated and untreated groups and low-dose IL-2 was injected at three different time points. Th17 and Tregs were analyzed by flow cytometry, and the related cytokines were analyzed by ELISA. Liver histopathology was examined by H&E and immunohistochemical staining. RESULTS: Twelve weeks after modeling, the serum AMA was positive and the ALP was significantly increased in PBC mouse models (P<0.05). The pathology showed lymphocyte infiltration in the portal area, damage, and reactive proliferation of the small bile duct (P<0.05). The flow cytometric showed the imbalance of Th17/Treg cells in the liver of PBC mouse models, with decreased Treg cells, increased Th17 cells, and Th17/Treg ratio (P < 0.05). After the low-dose IL-2 intervention, biochemical index and liver pathologies showed improvement at 12 weeks. Besides, the imbalance of Th17 and Treg cells recovered. Public database mining showed that Th17 cell differentiation may contribute to poor response in PBC patients. CONCLUSION: Low-dose IL-2 can significantly improve liver biochemistry and pathology by reversing the imbalance of Th17 and Treg cells, suggesting that it may be a potential therapeutic target for PBC.


Assuntos
Cirrose Hepática Biliar , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Feminino , Cirrose Hepática Biliar/tratamento farmacológico , Células Th17/patologia , Interleucina-2 , Camundongos Endogâmicos C57BL
16.
Sci Rep ; 14(1): 3177, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326344

RESUMO

At present, clinical outcomes of pancreatic cancer patients are still poor. New therapeutic targets for pancreatic cancer are urgently needed. Previous studies have indicated that Microtubule Associated Monooxygenase, Calponin and LIM Domain Containing 2 (MICAL2) is highly expressed in many tumors and promotes tumor progression. However, the role played by MICAL2 in pancreatic cancer remains unclear. Based on gene expression and clinical information from multiple datasets, we used comprehensive bioinformatics analysis in combination with tissue microarray to explore the function and clinical value of MICAL2. The results showed that MICAL2 was highly expressed in pancreatic cancer tissue and exhibited potential diagnostic capability. High expression of MICAL2 was also associated with poor prognosis and acted as an independent prognostic factor. MICAL2, mainly expressed in fibroblasts of pancreatic cancer, was closely related to metastasis and immune-related features, such as epithelial-mesenchymal transformation, extracellular cell matrix degradation, and inflammatory response. Furthermore, higher MICAL2 expression in pancreatic cancer was also associated with an increase in cancer-associated fibroblasts as well as M2 macrophage infiltration, and a reduction in CD8 + T cell infiltration, thereby facilitating the formation of an immunosuppressive microenvironment. Our results helped elucidate the clinical value and function in metastasis and immunity of MICAL2 in pancreatic cancer. These findings provided potential clinical strategies for diagnosis, targeted therapy combination immunotherapy, and prognosis in patients with pancreatic cancer.


Assuntos
Oxigenases de Função Mista , Neoplasias Pancreáticas , Humanos , Biomarcadores , Calponinas , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Prognóstico , Microambiente Tumoral/genética
17.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 496-506, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369836

RESUMO

The conventional peptide substrates of SARS-CoV-2 main protease (Mpro) are frequently associated with high cost, unstable kinetics, and multistep synthesis. Hence, there is an urgent need to design affordable and stable Mpro substrates for pharmacological research. Herein, we designed a functional Mpro substrate based on a dimerization-dependent red fluorescent protein (ddRFP) for the evaluation of Mpro inhibitors in vitro. The codon-optimized DNA fragment encoding RFP-A1 domain, a polypeptide linker containing Mpro cleavage sequence (AVLQS), and the RFP-B1 domain was subcloned into the pET-28a vector. After transformation into Escherichia coli Rosetta(DE3) cells, the kanamycin resistant transformants were selected. Using a low temperature induction strategy, most of the target proteins (ddRFP-M) presented in the supernatant fractions were collected and purified by a HisTrapTM chelating column. Subsequently, the inhibition of Mpro by ensitrelvir and baicalein was assessed using ddRFP-M assay, and the biochemical properties of ddRFP-M substrate were analyzed. Our results showed that the fluorogenic substrate ddRFP-M was successfully prepared from E. coli cells, and this biosensor exhibited the expected specificity, sensitivity, and reliability. In conclusion, the production of the fluorogenic substrate ddRFP-M provides an expedient avenue for the assessment of Mpro inhibitors in vitro.


Assuntos
Técnicas Biossensoriais , COVID-19 , Proteases 3C de Coronavírus , Humanos , Dimerização , Proteína Vermelha Fluorescente , SARS-CoV-2/genética , Escherichia coli/genética , Corantes Fluorescentes , Reprodutibilidade dos Testes , Peptídeos , Inibidores de Proteases , Simulação de Acoplamento Molecular
18.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252317

RESUMO

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Selênio , Selenoproteínas , Animais , Humanos , Camundongos , Membrana Celular , Canais Iônicos , Selenoproteínas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
19.
Commun Biol ; 7(1): 132, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278996

RESUMO

Long-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions. In this study, we detected that the CST expression levels were diminished in patients with ONFH compared with femoral neck fracture (FNF). In addition, a GC-induced rat ONFH model was established, which impaired bone quality in the femoral head. Then, administration of CST attenuated these ONFH phenotypes. Furthermore, osteoblast and endothelial cells were cultured and stimulated with dexamethasone (Dex) in the presence or absence of recombinant CST. As a result, Dex induced impaired anabolic metabolism of osteoblasts and suppressed tube formation in endothelial cells, while additional treatment with CST reversed this damage to the cells. Moreover, blocking GHSR1a, a well-accepted receptor of CST, or blocking the AKT signaling pathway largely abolished the protective function of CST in Dex-induced disorder of the cells. Taken together, we indicate that CST has the capability to prevent GC-induced apoptosis and metabolic disorder of osteoblasts in the pathogenesis of ONFH via the GHSR1a/AKT signaling pathway.


Assuntos
Glucocorticoides , Neuropeptídeos , Osteonecrose , Humanos , Ratos , Animais , Glucocorticoides/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Cabeça do Fêmur/metabolismo
20.
Sci Rep ; 14(1): 1216, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216619

RESUMO

Tumor inflammation is one of the hallmarks of tumors and is closely related to tumor occurrence and development, providing individualized prognostic prediction. However, few studies have evaluated the relationship between inflammation and the prognosis of bladder urothelial carcinoma (BLCA) patients. Therefore, we constructed a novel inflammation-related prognostic model that included six inflammation-related genes (IRGs) that can precisely predict the survival outcomes of BLCA patients. RNA-seq expression and corresponding clinical data from BLCA patients were downloaded from The Cancer Genome Atlas database. Enrichment analysis was subsequently performed to determine the enrichment of GO terms and KEGG pathways. K‒M analysis was used to compare overall survival (OS). Cox regression and LASSO regression were used to identify prognostic factors and construct the model. Finally, this prognostic model was used to evaluate cell infiltration in the BLCA tumor microenvironment and analyze the effect of immunotherapy in high- and low-risk patients. We established an IRG signature-based prognostic model with 6 IRGs (TNFRSF12A, NR1H3, ITIH4, IL1R1, ELN and CYP26B1), among which TNFRSF12A, IL1R1, ELN and CYP26B1 were unfavorable prognostic factors and NR1H3 and ITIH4 were protective indicators. High-risk score patients in the prognostic model had significantly poorer OS. Additionally, high-risk score patients were associated with an inhibitory immune tumor microenvironment and poor immunotherapy response. We also found a correlation between IRS-related genes and bladder cancer chemotherapy drugs in the drug sensitivity data. The IRG signature-based prognostic model we constructed can predict the prognosis of BLCA patients, providing additional information for individualized prognostic judgment and treatment selection.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Ácido Retinoico 4 Hidroxilase , Inflamação/genética , Prognóstico , Imunoterapia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA