Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Clin Respir J ; 18(5): e13770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783645

RESUMO

OBJECTIVE: This study aimed to explore the role and regulatory mechanism of lncRNA ZEB1-AS1 in lung cancer. METHODS: The expression of ZEB1-AS1 and miR-320b was determined by qRT-PCR. Cell viability, proliferation migration, and invasion were assessed using the CCK-8, colony-forming, and Transwell assay. EMT markers were quantified using western blot. The growth of subcutaneous tumor growth and metastatic bone tumors was evaluated in mouse model of lung cancer. Additionally, metastatic bone tumors were examined using H&E staining. RESULTS: ZEB1-AS1 expression was upregulated, while miR-320b levels were downregulated in lung cancer. Knockdown of ZEB1-AS1 resulted in a significant suppression of cell viability, proliferation, migration, invasion, and EMT in A549 cells. Furthermore, we confirmed the targeting relationship between ZEB1-AS1 and miR-320b, as well as between miR-320b and BMPR1A. Our findings suggested that ZEB1-AS1 regulated cell viability, proliferation, migration, and invasion, as well as EMT, in lung cancer cells by targeting the miR-320b/BMPR1A axis. Moreover, our in vivo experiments confirmed that ZEB1-AS1 mediated bone metastasis through targeting miR-320b/BMPR1A axis in mice with lung cancer. CONCLUSION: ZEB1-AS1 mediated bone metastasis through targeting miR-320b/BMPR1A axis in lung cancer.


Assuntos
Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Células A549 , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Masculino , Feminino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
J Transl Med ; 22(1): 436, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720350

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitofagia , Doenças Neuroinflamatórias , Nucleotidiltransferases , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Proteínas de Membrana/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Masculino , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 16(15): 19615-19624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587106

RESUMO

Introducing component-selective polymer chains onto the surface of a particle is an effective approach to improve the compatibilization efficiency of a particle-based compatibilizer. In this study, two particles with different kinds of component-selective polymer chains that have the same length and similar density but different graft locations were synthesized and their compatibilization effects were comparatively investigated. It was found that compared with the particle with homogeneous PMMA and PP grafts (R-P), the particle with a hemisphere of poly(methyl methacrylate) (PMMA) grafts and other hemisphere of polypropylene (PP) chains (J-P) showed a better compatibilization effect under equal loadings, although both particles exhibited high efficiency. The better compatibilization effect of particles with Janus grafts may be attributed to the stronger entanglements between grafted polymer chains and selective individual components. This work suggests that optimizing the graft location of a particle is an effective strategy for improving its compatibilization efficiency and helpful for the design of advanced particle compatibilizers.

4.
Theor Appl Genet ; 137(4): 90, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555318

RESUMO

KEY MESSAGE: Fine mapping of the maize QTL qSRC3, responsible for red silk, uncovered the candidate gene ZmMYB20, which encodes an R2R3-MYB transcription factor, has light-sensitive expression, and putatively regulates genes expression associated with anthocyanin biosynthesis. Colorless silk is a key characteristic contributing to the visual quality of fresh corn intended for market distribution. Nonetheless, the identification of Mendelian trait loci and associated genes that control silk color has been scarce. In this study, a F2 population arising from the hybridization of the single-segment substitution line qSRC3MT1 with red silk, carrying an introgressed allele from teosinte (Zea mays ssp. mexicana), and the recurrent maize inbred line Mo17, characterized by light green silk, was utilized for fine mapping. We found that the red silk trait is controlled by a semi-dominant genetic locus known as qSRC3, and its expression is susceptible to light-mediated inhibition. Moreover, qSRC3 explained 68.78% of the phenotypic variance and was delimited to a 133.2 kb region, which includes three genes. Subsequent expression analyses revealed that ZmMYB20 (Zm00001d039700), which encodes an R2R3-MYB transcription factor, was the key candidate gene within qSRC3. Yeast one-hybrid and dual-luciferase reporter assays provided evidence that ZmMYB20 suppresses the expression of two crucial anthocyanin biosynthesis genes, namely ZmF3H and ZmUFGT, by directly binding to their respective promoter regions. Our findings underscore the significance of light-inhibited ZmMYB20 in orchestrating the spatial and temporal regulation of anthocyanin biosynthesis. These results advance the production of colorless silk in fresh corn, responding to the misconception that fresh corn with withered colored silk is not fresh and providing valuable genetic resources for the improvement of sweet and waxy maize.


Assuntos
Antocianinas , Zea mays , Mapeamento Cromossômico/métodos , Zea mays/genética , Fatores de Transcrição/genética , Estudos de Associação Genética
5.
Front Immunol ; 15: 1354040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529273

RESUMO

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Assuntos
Antioxidantes , Taraxacum , Animais , Antioxidantes/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Aves Domésticas
6.
Plant Physiol ; 195(1): 812-831, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38270532

RESUMO

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Termotolerância , Fatores de Transcrição , Capsicum/genética , Capsicum/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Nicotiana/genética , Nicotiana/fisiologia , Plantas Geneticamente Modificadas , Resposta ao Choque Térmico/genética , Temperatura Alta , Ácido Abscísico/metabolismo
7.
Plant J ; 117(1): 121-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738430

RESUMO

Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.


Assuntos
Capsicum , Ralstonia solanacearum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ralstonia solanacearum/fisiologia , Desidratação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Capsicum/metabolismo , Resistência à Doença/genética
8.
Mol Breed ; 43(12): 88, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045561

RESUMO

The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01431-y.

9.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138559

RESUMO

Lactobacillus plantarum is a kind of probiotic that benefits the host by regulating the gut microbiota, but it is easily damaged when passing through the gastrointestinal tract, hindering its ability to reach the destination and reducing its utilization value. Encapsulation is a promising strategy for solving this problem. In this study, transglutaminase (TGase)-crosslinked gelatin (GE)/sodium hexametaphosphate (SHMP) hydrogels were used to encapsulate L. plantarum. The effects of TGase concentration and drying method on the physiochemical properties of the hydrogels were determined. The results showed that at a TGase concentration of 9 U/gGE, the hardness, chewiness, energy storage modulus, and apparent viscosity of the hydrogel encapsulation system were maximized. This concentration produced more high-energy isopeptide bonds, strengthening the interactions between molecules, forming a more stable three-dimensional network structure. The survival rate under the simulated gastrointestinal conditions and storage stability of L. plantarum were improved at this concentration. The thermal stability of the encapsulation system dried via microwave vacuum freeze drying (MFD) was slightly higher than that when dried via freeze drying (FD). The gel structure was more stable, and the activity of L. plantarum decreased more slowly during the storage period when dried using MFD. This research provides a theoretical basis for the development of encapsulation technology of probiotics.


Assuntos
Lactobacillus plantarum , Probióticos , Gelatina/farmacologia , Viabilidade Microbiana , Transglutaminases/farmacologia , Hidrogéis/farmacologia , Liofilização , Probióticos/química
10.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005364

RESUMO

Sanguinarine (SAN), as the main active component of a traditional Chinese veterinary medicine, has been widely used in the animal husbandry and breeding industry. However, the metabolites of SA are still uncertain. Therefore, this research aimed to investigate the metabolites of SA based on rats in vivo. The blood, feces, and urine of rats were collected after the oral administration of 40 mg/kg SAN. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was employed to identify the metabolites of SAN. The elemental composition of sanguinarine metabolites was inferred by analyzing their exact molecular weight, and the structures of the metabolites were predicted based on their fragment ions and cleavage pathways. A total of 12 metabolites were identified, including three metabolites in the plasma, four in the urine, and nine in the feces. According to the possible metabolic pathways deduced in this study, SAN was mainly metabolized through reduction, oxidation, demethylation, hydroxylation, and glucuronidation. This present research has summarized the metabolism of SAN in rats, which is helpful for further studying the metabolic mechanism of SAN in vivo and in vitro.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Plasma/química , Medicamentos de Ervas Chinesas/química , Administração Oral
11.
Adv Clin Exp Med ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37589226

RESUMO

BACKGROUND: Malreduction remains a problem in patients with an ankle joint fracture combined with a lower tibiofibular syndesmosis injury. Current methods of malreduction evaluation have many limitations, and novel techniques are required. OBJECTIVES: The aim of the study was to investigate the association between the distance between the anterior and posterior edges of the fibula at a 15° lateral internal rotation and postoperative malreduction in patients with an ankle joint fracture combined with a lower tibiofibular syndesmosis injury. MATERIAL AND METHODS: This prospective observational cohort study enrolled 187 patients diagnosed with an ankle joint fracture combined with a lower tibiofibular syndesmosis injury between January 2020 and January 2022. The patients were divided into 2 groups according to their postoperative malreduction condition: the malreduction group and the non-malreduction group. After tibiofibular syndesmosis reduction, a computed tomography (CT) scan was used to measure the distance between the anterior and posterior edges of the fibula at a standard lateral position and a position with a lateral internal rotation of 15°. Demographic data and basic clinical characteristics were recorded for all patients. RESULTS: The mean distance between the anterior and posterior edges of the fibula was longer in malreduction patients than non-malreduction patients at the standard lateral and 15° lateral internal rotation positions. At a lateral internal rotation of 15°, the distance between the anterior and posterior edges correlated negatively with the postoperative Mazur and American Orthopaedic Foot and Ankle Society (AOFAS) scores, and correlated positively with the length of hospitalization and fracture healing time. Receiver operating characteristic (ROC) curves revealed the potential postoperative malreduction diagnostic value of fibular anterior-posterior edge distance using an internal rotation of 15°. Postoperative AOFAS score, length of hospitalization, fracture healing time, and the distance between the anterior and posterior edges of the fibula at a lateral internal rotation of 15° were independent risk factors of malreduction. CONCLUSIONS: The fibular anterior-posterior edge distance at an internal rotation of 15° is associated with postoperative ankle joint function and the occurrence of malreduction.

12.
Front Immunol ; 14: 1148632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614240

RESUMO

Objective: To address a novel lower-dose rituximab (RTX) therapy strategy based on our clinical experience and assess its efficacy and safety in neuromyelitis optica spectrum disorder (NMOSD). Methods: A multicenter, open-label, self-controlled, prospective follow-up study. Totally, 108 NMOSD patients were enrolled and a lower-dose RTX strategy was applied including 100 mg weekly for 3 weeks and then reinfusions every 6 months. Annualized relapse rate (ARR), the expanded disability status scale (EDSS) score and length of spinal cord lesions were included to evaluate the efficacy. Side effects were recorded to assess the safety profile. Results: Of 108 patients, 80 (74.1%) initiated low-dose RTX therapy immediately after acute attack treatment and 33 (30.6%) initiated it after the first attack. During a median treatment period of 35.5 (22.0-48.8) months, significant decreases were observed in median ARR (1.1 [0.8-2.0] versus 0 [0-0.2], p < 0.001), EDSS score (3.5 [2.5-4.0] versus 2.0 [1.0-3.0], p < 0.001) and spinal cord lesion segments (5.0 [4.0-8.0] versus 3.0 [1.0-6.0], p < 0.001). The cumulative risk of relapses significantly decreased during the post- versus pre-RTX period (HR 0.238, 95%CI 0.160-0.356, p < 0.001) and on early therapy initiated within 24 months after disease onset versus delayed therapy (HR 0.506, 95%CI 0.258-0.994, p = 0.041). No serious side effects were recorded and all the subjects did not discontinue treatment due to RTX-related side effects. Conclusion: Our research provided evidence supporting the lower-dose RTX strategy in treating NMOSD and reopened the issues of optimal dosage and therapy initiation timing.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neuromielite Óptica , Humanos , Neuromielite Óptica/tratamento farmacológico , Seguimentos , Rituximab/efeitos adversos , Estudos Prospectivos , Prevenção Secundária
13.
Nutr Rev ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37634143

RESUMO

Intermittent fasting (IF), one of the most popular diets, can regulate inflammation and promote health; however, the detailed molecular mechanisms are not fully understood. The present review aims to provide an overview of recent preclinical and clinical studies that have examined the effect of IF on inflammasome signaling, and to discuss the translational gap between preclinical and clinical studies. Three databases (PubMed, Web of Science, and Embase) were searched to identify all relevant preclinical and clinical studies up to October 30, 2022. A total of 1544 studies were identified through the database searches, and 29 preclinical and 10 clinical studies were included. Twenty-three of the 29 preclinical studies reported that IF treatment could reduce inflammasome activation in neurological diseases, metabolic and cardiovascular diseases, immune and inflammatory diseases, gastrointestinal diseases, and pulmonary diseases, and 7 of the 10 clinical studies demonstrated reduced inflammasome activation after IF intervention in both healthy and obese participants. Among various IF regimens, time-restricted eating seemed to be the most effective one in terms of inflammasome regulation, and the efficacy of IF might increase over time. This review highlights the regulatory effect of IF on inflammasome activation in health and disease. Future studies using different IF regimens, in various populations, are needed in order to evaluate its potential to be used alone or as an adjunct therapy in humans to improve health and counteract diseases.

14.
BMC Neurol ; 23(1): 91, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859180

RESUMO

BACKGROUND: Fibromuscular dysplasia (FMD) has a high prevalence of associated nontraumatic carotid artery dissection, which could further result in transient ischaemic attack (TIA) or stroke. Limb shaking TIA is an unusual form of TIA that is commonly discribed in elderly patients with atherosclerotic backgrounds, while there are limited data about it in patients with FMD. Furthermore, discussions of limb shaking TIA in nonelderly patients are scarce. CASE PRESENTATION: An Asian 47-year-old female presented with intermittent involuntary movement of the left upper limb accompanied by neck torsion. The episode stopped soon after changing to the supine position. On native source images of time-of-flight magnetic resonance angiography (TOF-MRA), the right internal carotid artery showed a "dual lumen sign" with an intimal flap. On contrast-enhanced magnetic resonance angiography and sagittal black-blood T1WI, an intravascular haematoma with irregular lumen stenosis was observed, which overall indicated right internal carotid artery dissection. Digital subtraction angiography showed the characteristic "string-of-beads" appearance in the left internal carotid artery, and the presence of this sign pointed to the diagnosis of FMD. The patient was finally diagnosed with limb shaking TIA due to internal carotid dissection with fibromuscular dysplasia. The patient was prescribed dual anti-platelet therapy. The limb shaking vanished soon after admission with no reoccurrence in the three-month follow-up. CONCLUSIONS: This case demonstrates that limb shaking TIA can present in patients with FMD. Limb shaking TIA in nonelderly patients can be caused by multiple diseases, and more detailed patient guidance is required in clinical practice.


Assuntos
Dissecção Aórtica , Dissecação da Artéria Carótida Interna , Displasia Fibromuscular , Ataque Isquêmico Transitório , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Tremor , Artéria Carótida Interna
15.
J Sci Food Agric ; 103(9): 4660-4667, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36882894

RESUMO

BACKGROUND: Egg yolk powder (EYP) with high immunoglobulin of yolk (IgY) content and good solubility is in great demand in the market of functional foods. In this article, the properties of spray-dried EYP with the addition of five protectants (maltodextrin, trehalose, mannitol, maltitol and sucrose) were investigated. RESULTS: All the protectants increased IgY activity and solubility of EYP. Among them, EYP with maltodextrin displayed the highest activity of IgY (27.11 mg/g), the highest solubility (66.39%) and the lowest surface hydrophobicity. Moreover, the average particle size of EYP with maltodextrin was the smallest (9.78 µm). The egg yolk particles obtained by adding the protectants are more uniformly distributed and have smaller particle size. Fourier-transform infrared spectroscopy confirmed the structural integrity of the proteins, indicating that the protectants addition enhanced the hydrogen bonding forces between the EYP protein molecules. CONCLUSION: The addition of protectants can significantly improve the IgY content, solubility and structural stability of EYP. © 2023 Society of Chemical Industry.


Assuntos
Gema de Ovo , Imunoglobulinas , Animais , Pós , Imunoglobulinas/química , Sacarose , Galinhas
16.
Comput Intell Neurosci ; 2022: 9469234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733559

RESUMO

Lung cancer accounts for the greatest number of cancer-related mortality, while the accurate evaluation of pulmonary nodules in computed tomography (CT) images can significantly increase the 5-year relative survival rate. Despite deep learning methods that have recently been introduced to the identification of malignant nodules, a substantial challenge remains due to the limited datasets. In this study, we propose a cascaded-recalibrated multiple instance learning (MIL) model based on multiattribute features transfer for pathologic-level lung cancer prediction in CT images. This cascaded-recalibrated MIL deep model incorporates a cascaded recalibration mechanism at the nodule level and attribute level, which fuses the informative attribute features into nodule embeddings and then the key nodule features can be converged into the patient-level embedding to improve the performance of lung cancer prediction. We evaluated the proposed cascaded-recalibrated MIL model on the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) benchmark dataset and compared it to the latest approaches. The experimental results showed a significant performance boost by the cascaded-recalibrated MIL model over the higher-order transfer learning, instance-space MIL, and embedding-space MIL models and the radiologists. In addition, the recalibration coefficients of the nodule and attribute feature for the final decision were also analyzed to reveal the underlying relationship between the confirmed diagnosis and its highly-correlated attributes. The cascaded recalibration mechanism enables the MIL model to pay more attention to those important nodules and attributes while suppressing less-useful feature embeddings, and the cascaded-recalibrated MIL model provides substantial improvements for the pathologic-level lung cancer prediction by using the CT images. The identification of the important nodules and attributes also provides better interpretability for model decision-making, which is very important for medical applications.


Assuntos
Neoplasias Pulmonares , Interpretação de Imagem Radiográfica Assistida por Computador , Bases de Dados Factuais , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
17.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742935

RESUMO

Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers' resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.


Assuntos
Capsicum , Resistência à Doença , Ácido Abscísico/metabolismo , Capsicum/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Metiltransferases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
18.
Plant J ; 111(1): 250-268, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491968

RESUMO

Bacterial wilt, a severe disease involving vascular system blockade, is caused by Ralstonia solanacearum. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related remains unclear. Herein, we showed that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by the CaPti1-CaERF3 module. CaPti1 and CaERF3 are members of the serine/threonine protein kinase and ethylene-responsive factor families, respectively. Expression profiling revealed that CaPti1 and CaERF3 were upregulated by R. solanacearum inoculation, dehydration stress, and exogenously applied abscisic acid (ABA). They in turn phenocopied each other in promoting resistance of pepper (Capsicum annuum) to bacterial wilt not only by activating salicylic acid-dependent CaPR1, but also by activating dehydration tolerance-related CaOSM1 and CaOSR1 and inducing stomatal closure to reduce water loss in an ABA signaling-dependent manner. Our yeast two hybrid assay showed that CaERF3 interacted with CaPti1, which was confirmed using co-immunoprecipitation, bimolecular fluorescence complementation, and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that upon R. solanacearum inoculation, CaPR1, CaOSM1, and CaOSR1 were directly targeted and positively regulated by CaERF3 and potentiated by CaPti1. Additionally, our data indicated that the CaPti1-CaERF3 complex might act downstream of ABA signaling, as exogenously applied ABA did not alter regulation of stomatal aperture by the CaPti1-CaERF3 module. Importantly, the CaPti1-CaERF3 module positively affected pepper growth and the response to dehydration stress. Collectively, the results suggested that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF3 in pepper plants to enhance resistance against R. solanacearum.


Assuntos
Capsicum , Ralstonia solanacearum , Ácido Abscísico/metabolismo , Capsicum/genética , Capsicum/metabolismo , Desidratação , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Front Pharmacol ; 13: 822023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401213

RESUMO

Metformin is a kind of widely used antidiabetic drug that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Recently, some studies showed that metformin exhibits anticancer properties in a variety of cancers. Although several antitumor mechanisms have been proposed for metformin action, its mode of action in human liver cancer remains not elucidated. In our study, we investigated the underlying molecular mechanisms of metformin's antitumor effect on Huh-7 cells of hepatocellular carcinoma (HCC) in vitro. RNA sequencing was performed to explore the effect of metformin on the transcriptome of Huh-7 cells. The results revealed that 4,518 genes (with log2 fold change > 1 or < -1, adjusted p-value < 0.05) were differentially expressed in Huh-7 cells with treatment of 25-mM metformin compared with 0-mM metformin, including 1,812 upregulated and 2,706 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 54 classical pathways that were significantly enriched, and 16 pathways are closely associated with cancer, such as cell cycle, DNA replication, extracellular matrix-receptor interaction, and so on. We selected 11 differentially expressed genes, which are closely associated with HCC, to validate their differential expressions through a quantitative real-time reverse transcription-polymerase chain reaction. The result exhibited that the genes of fatty acid synthase, mini-chromosome maintenance complex components 6 and 5, myristoylated alanine-rich C-kinase substrate, fatty acid desaturase 2, C-X-C motif chemokine ligand 1, bone morphogenetic protein 4, S-phase kinase-associated protein 2, kininogen 1, and proliferating cell nuclear antigen were downregulated, and Dual-specificity phosphatase-1 is significantly upregulated in Huh-7 cells with treatment of 25-mM metformin. These differentially expressed genes and pathways might play a crucial part in the antitumor effect of metformin and might be potential targets of metformin treating HCC. Further investigations are required to evaluate the metformin mechanisms of anticancer action in vivo.

20.
Front Oncol ; 12: 783487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280812

RESUMO

Purpose: Our understanding of breast cancer in very young women (≤35 years old) remains limited. We aimed to assess the clinicopathological characteristics, molecular subtype, and treatment distribution and prognosis of these young patients compared with patients over 35 years. Methods: We retrospectively analyzed non-metastatic female breast cancer cases treated at three Chinese academic hospitals between January 1, 2008, and December 31, 2018. Local recurrence-free survival (LRFS), disease-free survival (DFS), and overall survival (OS) were compared between different age groups and stratified with distinct molecular subtypes. Results: A total of 11,671 women were eligible for the final analyses, and 1,207 women (10.3%) were ≤35 years at disease onset. Very young breast cancer women were more likely to be single or childless, have higher-grade disease, have more probability of lymphovascular invasion (LVI) in tumor and triple-negative subtype, and be treated by lumpectomy, chemotherapy especially more anthracycline- and paclitaxel-based chemotherapy, endocrine therapy plus ovarian function suppression (OFS), anti-HER2 therapy, and/or radiotherapy than older women (P < 0.05 for all). Very young women had the lowest 5-year LRFS and DFS among all age groups (P < 0.001 for all). When stratified by molecular subtype, very young women had the worst outcomes vs. women from the 35~50-year-old group or those from >50-year-old group for hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) subtype, including LRFS, DFS, and OS (P < 0.05 for all). In terms of LRFS and DFS, multivariate analyses showed similar results among the different age groups. Conclusion: Our study demonstrated that very young women with breast cancer had higher-grade tumors, more probability of LVI in tumor, and more triple-negative subtype, when compared with older patients. They had less favorable survival outcomes, especially for patients with the HR+/HER2- subtype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA