Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175203, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127216

RESUMO

Recent studies have indicated a good potential for using solar-induced chlorophyll fluorescence (SIF) to estimate photosynthetic CO2 assimilation. SIF can be emitted by both Photosystem I (PSI) and Photosystem II (PSII), but it is the SIF signals from PSII which are related to photosynthetic carbon fixation. However, since top-of-canopy SIF observations (SIFTOC) always contain contributions from both photosystems, to mechanistically estimate gross primary productivity (GPP) from SIF, it is essential to extract PSII SIF from SIFTOC. Based on the differences in the relative contribution of PSII across different wavelengths, we propose a practical approach for extracting PSII contribution to SIFTOC at the near-infrared (NIR) band (fPSII_760) using measurements of SIFTOC in the red and NIR spectral regions. A leaf-scale concurrent instrument was developed to assess the response of fPSII_760 under varying environments. For winter-wheat leaves, as light intensity increased from 0 to 400 µmol m-2 s-1, fPSII_760 rose from 0.6 to 0.8; with further increase in light intensity to 1800 µmol m-2 s-1, fPSII_760 consistently decreased to 0.65. There was a slight decreasing trend in fPSII_760 with rising temperatures, with values dropping from 0.65 at 15 °C to 0.61 at 40 °C. We found that variations in fPSII_760 are due to changes in the fluorescence yield of PSII, with the two having a positively proportional relationship. We also estimated canopy-scale fPSII_760 for a winter-wheat study site: fPSII_760 varied from 0.61 to 0.83, with a mean value of 0.78 during the peak growing season. A comparison with eddy covariance-derived GPP reveals that GPP estimated with dynamic fPSII_760 was more accurate than that calculated using fixed fPSII_760, with R2 increasing from 0.6 to 0.84. This study contributes to a deeper understanding of the link between SIF and photosynthetic CO2 assimilation, paving the way for more effective use of SIF to estimate GPP.


Assuntos
Clorofila , Fotossíntese , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Fluorescência , Luz Solar , Folhas de Planta/metabolismo , Triticum
2.
Sci Total Environ ; 934: 173084, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735314

RESUMO

Water use efficiency (defined as the ratio of gross primary productivity to plant transpiration, WUET) describes the tradeoff between ecosystem carbon uptake and water loss. However, a comprehensive understanding of the impact of soil and atmospheric moisture deficits on WUET across large regions remains incomplete. Solar-induced chlorophyll fluorescence (SIF) serves as an effective signal for measuring both terrestrial vegetation photosynthesis and transpiration, thereby enabling a rapid response to changes in the physiological status of plants under water stress. The objectives of this study were to: 1) mechanistically calculate WUET using top-of-canopy SIF data and meteorological information by using the revised mechanistic light response model and the Penman-Monteith equation; 2) analyze the effects of atmospheric and soil water deficits on SIF-based WUET by using decoupled soil water content (SWC) and vapor pressure deficit (VPD); 3) evaluate estimated SIF-based WUET against data from 28 eddy covariance (EC) flux sites representing eight different vegetation types. Results indicated that the model performed well in ecosystems with dense canopies, explaining 56 % of the daily variability in EC tower-based WUET. For the years 2019-2020, the global average WUET derived from SIF was 3.49 g C/kg H2O. Notably, this value exceeded 4 g C/kg H2O in tropical rainforest regions near the equator and went beyond 5 g C/kg H2O in the high-latitude regions of the Northern Hemisphere. We found that SIF-based WUET was primarily influenced by VPD rather than SWC in over 90 % of the global vegetated area. The model used in this study increased our ability to mechanistically estimate WUET with SIF at the global scale, thereby highlighting the significance of the global response of SIF-based WUET to water stress, and also enhancing our understanding of the water­carbon cycle in terrestrial ecosystems.


Assuntos
Secas , Água , Ecossistema , Atmosfera/química , Transpiração Vegetal , Solo/química , Fotossíntese , Monitoramento Ambiental , Clorofila/metabolismo
3.
Plants (Basel) ; 12(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836105

RESUMO

Solar-induced chlorophyll fluorescence (SIF) has a high correlation with Gross Primary Production (GPP). However, studies focusing on the impact of drought on the SIF-GPP relationship have had mixed results at various scales, and the mechanisms controlling the dynamics between photosynthesis and fluorescence emission under water stress are not well understood. We developed a leaf-scale measurement system to perform concurrent measurements of active and passive fluorescence, and gas-exchange rates for winter wheat experiencing a one-month progressive drought. Our results confirmed that: (1) shifts in light energy allocation towards decreasing photochemistry (the quantum yields of photochemical quenching in PSII decreased from 0.42 to 0.21 under intermediate light conditions) and increasing fluorescence emissions (the quantum yields of fluorescence increased to 0.062 from 0.024) as drought progressed enhance the degree of nonlinearity of the SIF-GPP relationship, and (2) SIF alone has a limited capacity to track changes in the photosynthetic status of plants under drought conditions. However, by incorporating the water stress factor into a SIF-based mechanistic photosynthesis model, we show that drought-induced variations in a variety of key photosynthetic parameters, including stomatal conductance and photosynthetic CO2 assimilation, can be accurately estimated using measurements of SIF, photosynthetically active radiation, air temperature, and soil moisture as inputs. Our findings provide the experimental and theoretical foundations necessary for employing SIF mechanistically to estimate plant photosynthetic activity during periods of drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA