Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
ACS Sens ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967239

RESUMO

Limited by insufficient active sites and restricted mechanical strength, designing reliable and wearable gas sensors with high activity and ductility remains a challenge for detecting hazardous gases. In this work, a thermally induced and solvent-assisted oxyanion etching strategy was implemented for selective pore opening in a rigid microporous Cu-based metal-organic framework (referred to as CuM). A conductive CuM/MXene aerogel was then self-assembled through cooperative hydrogen bonding interactions between the carbonyl oxygen atom in PVP grafted on the surface of defect-rich Cu-BTC and the surface functional hydroxyl group on MXene. A flexible NO2 sensing performance using the CuM/MXene aerogel hybridized sodium alginate hydrogel is finally achieved, demonstrating extraordinary sensitivity (S = 52.47 toward 50 ppm of NO2), good selectivity, and rapid response/recovery time (0.9/4.5 s) at room temperature. Compared with commercial sensors, the relative error is less than 7.7%, thereby exhibiting significant potential for application in monitoring toxic and harmful gases. This work not only provides insights for guiding rational synthesis of ideal structure models from MOF composites but also inspires the development of high-performance flexible gas sensors for potential multiscenario applications.

3.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005007

RESUMO

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Assuntos
Distribuição Contracorrente , Ginkgo biloba , Extratos Vegetais , Folhas de Planta , Solventes , Ginkgo biloba/química , Solventes/química , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Água/química , Metanol/química , Acetatos/química , Extrato de Ginkgo
5.
Alzheimers Dement ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824621

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.

6.
Adv Mater ; : e2402457, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898691

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death worldwide. Patients often fail to recognize the early signs of CVDs, which display irregularities in cardiac contractility and may ultimately lead to heart failure. Therefore, continuously monitoring the abnormal changes in cardiac contractility may represent a novel approach to long-term CVD surveillance. Here, a zero-power consumption and implantable bias-free cardiac monitoring capsule (BCMC) is introduced based on the triboelectric effect for cardiac contractility monitoring in situ. The output performance of BCMC is improved over 10 times with nanoparticle self-adsorption method. This device can be implanted into the right ventricle of swine using catheter intervention to detect the change of cardiac contractility and the corresponding CVDs. The physiological signals can be wirelessly transmitted to a mobile terminal for analysis through the acquisition and transmission module. This work contributes to a new option for precise monitoring and early diagnosis of CVDs.

7.
Appl Opt ; 63(13): 3399-3405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856524

RESUMO

Weakly coupled mode-division multiplexing (MDM) transmission over legacy laid multimode fiber (MMF) has great economic efficiency and can enormously enhance the capacity of short-reach optical interconnections. In order to be compatible with cost-efficient intensity-modulation/direct-detection (IM/DD) transceivers, weakly coupled mode-group demultiplexers that can simultaneously receive each mode group of MMFs are highly desired. In this paper, we propose a scalable low-modal-crosstalk mode-group demultiplexer over MMF based on multiplane light conversion (MPLC). Multiple input Hermite-Gaussian (HG) modes of MMF are first converted to bridging modes that are composed of H G 00 modes distributed as a right-angle triangle in Cartesian coordinates, and then each H G 00 mode belonging to a degenerate mode group is mapped to different overlapped H G n0 modes with vertical orientation for simultaneous detection. With the help of bridging modes, the MPLC-based mode-group demultiplexer can efficiently demultiplex all mode groups in standard MMFs with less than 20 phase masks. A nine-mode-group demultiplexer is further designed for demonstration, and simulation results show that the MPLC-based demultiplexer achieves low modal crosstalk of lower than -22.3d B at 1550 nm and lower than -17.9d B over the C-band for all the nine mode groups with only 16 phase masks.

8.
ACS Appl Mater Interfaces ; 16(25): 32189-32197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870428

RESUMO

Owing to the advantages of low cost, high safety, and a desirable cycling lifetime, vanadium redox flow batteries (VRFBs) have attracted great attention in the large-scale energy storage field. However, graphite felts (GFs), widely used as electrode materials, usually possess an inferior catalytic activity for the redox reaction of vanadium ions, largely limiting the energy efficiency and rate performance of VRFBs. Here, an in situ growth of amorphous MnO2 on graphite felt (AMO@GF) was designed for application in VRFBs via mild and rapid etching engineering (5 min). After the etching process, the graphite felt fibers showed a porous and defective surface, contributing to abundant active sites toward the redox reaction. In addition, formed amorphous MnO2 can also serve as a powerful catalyst to facilitate the redox couples of VO2+/VO2+ based on density functional theoretical (DFT) calculations. As a result, the VRFB using AMO@GF displayed an elevated energy efficiency and superior stability after 2400 cycles at 200 mA cm-2, and the maximum current density can reach 300 mA cm-2. Such a high-efficiency and convenient design strategy for the electrode material will drive the further development and industrial application of VRFBs and other flow battery systems.

9.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842135

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Assuntos
Apoptose , Biflavonoides , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
10.
J Environ Manage ; 365: 121534, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905797

RESUMO

Species and functional diversity play a major role in the stability and sustainability of grassland ecosystems. However, changes in species and functional diversity during grassland degradation in arid areas as well as the underlying mechanisms remain unclear. In this study, we surveyed the vegetation and soil properties of arid regions across a degradation gradient to explore the shifts in species and functional diversity in plant communities, their relationships and key determinants during desert steppe degradation. Our results found significant variability in species diversity and functional diversity across degradation stages. Species diversity (Shannon-Wiener index (H), and Pielou index) and functional diversity (functional evenness (FEve) index, and Rao's quadratic entropy (RaoQ) index) tended to increase initially and then decrease with increasing grassland degradation. The Patrick index, Simpson index, functional richness (FRic) index, functional divergence (FDiv) index, and functional dispersion (FDis) index declined as grassland degradation increased. The relationships between species diversity and functional diversity indices at different stages of degradation in the desert steppe were inconsistent. From no to heavy degradation grasslands, the correlation between species diversity and functional diversity gradually weakened. Specifically, there was a significant correlation between Patrick (R) and FRic indices (R2 > 0.7) on both non-degraded and light degraded grasslands, but there was no significant correlation between R and FRic indices in moderately and heavily degraded grasslands (R2 < 0.7), and R2 gradually decreased. Redundancy analysis and partial least squares path modeling showed that grassland degradation has a significant direct effect on the species diversity and functional diversity. In addition grassland degradation has direct and indirect effects on the species diversity through soil available nitrogen, organic matter and total nitrogen. Functional diversity is directly or indirectly affected by species diversity, soil available nitrogen, organic matter and total nitrogen, soil moisture content, soil bulk density, and pH value. In summary, the relationship between species and functional diversity indices gradually weakened from areas with no degradation to heavy degradation in arid desert grasslands. Our study reveals the patterns and relationships between species diversity and functional diversity throughout the process of grassland degradation, demonstrating a gradual decrease in ecosystem stability and sustainability as degradation advances. Our results have significant implications for the restoration of grassland degradation and the management of ecosystem services in arid steppe regions.


Assuntos
Biodiversidade , Pradaria , China , Ecossistema , Solo/química , Clima Desértico , Plantas
11.
Imeta ; 3(1): e164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868516

RESUMO

Plant Hormone Gene Database (PHGD) database platform construction pipeline. First, we collected all reported hormone-related genes in the model plant Arabidopsis thaliana, and combined with the existing experimental background, mapped the hormone-gene interaction network to provide a blueprint. Next, we collected 469 high-quality plant genomes. Then, bioinformatics was used to identify hormone-related genes in these plants. Finally, these genetic data were programmed to be stored in a database and a platform website PHGD was built. PHGD was divided into eight modules, namely Home, Browse, Search, Resources, Download, Tools, Help, and Contact. We provided data resources and platform services to facilitate the study of plant hormones.

12.
Cancer Med ; 13(11): e7326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826114

RESUMO

BACKGROUND: Optimal adjuvant chemotherapy after laparoscopic surgery in gastric cancer (GC) patients is still undefined. We aimed to evaluate the efficacy of S-1 plus oxaliplatin (SOX) and capecitabine plus oxaliplatin (CAPOX) in patients with GC after laparoscopic gastrectomy. METHODS: A non-inferiority randomized controlled clinical trial was performed in China. Patients with advanced GC who underwent laparoscopic D2 gastrectomy were randomly assigned to receive SOX and CAPOX regimens. RESULTS: In total, 191 patients were screened between May 2018 and June 2019, and 140 (73.3%) were included in the modified intent-to-treat analysis (mITT), of whom 69 and 71 were assigned to the SOX and CAPOX groups, respectively. The SOX group had similar 3-year overall survival (OS) and disease-free survival to the CAPOX group. Subgroup analysis revealed significantly better OS in the SOX group for male patients ([HR] = 0.395; 95% [CI], 0.153-1.019; p = 0.045), age >60 (HR = 0.219; 95% [CI], 0.064-0.753; p = 0.016), tumors in the gastric antrum (HR = 0.273; 95% [CI], 0.076-0.981; p = 0.047), and moderately differentiated tumors (HR = 0.338; 95% [CI], 0.110-1.041; p = 0.041). There were no significant differences observed in terms of adverse events and recurrence patterns between the two groups. CONCLUSION: Adjuvant SOX was non-inferior to CAPOX treatments for patients with GC who underwent curative laparoscopic D2 gastrectomy. For male patients, aged >60 years, tumors in the gastric antrum, and moderately differentiated tumors, adjuvant SOX may achieve an improvement compared with CAPOX.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Capecitabina , Combinação de Medicamentos , Gastrectomia , Laparoscopia , Oxaliplatina , Ácido Oxônico , Neoplasias Gástricas , Tegafur , Humanos , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Masculino , Gastrectomia/métodos , Feminino , Pessoa de Meia-Idade , Laparoscopia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Oxaliplatina/uso terapêutico , Oxaliplatina/administração & dosagem , Tegafur/uso terapêutico , Tegafur/administração & dosagem , Ácido Oxônico/uso terapêutico , Ácido Oxônico/administração & dosagem , Quimioterapia Adjuvante/métodos , Capecitabina/administração & dosagem , Capecitabina/uso terapêutico , Idoso , Adulto
13.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748014

RESUMO

Fatty acids from cooking fumes and hypochlorous acid (HOCl) released from indoor cleaning adversely affect respiratory health, but the molecular-level mechanism remains unclear. Here, the effect of cooking oil fumes [palmitic acid (PA), oleic acid (OA), and linoleic acid (LA)] on lung model phospholipid (POPG) hydrochlorination mediated by HOCl at the air-water interface of the hanged droplets was investigated. Interfacial hydrochlorination of POPG was impeded by OA and LA, while that of POPG was facilitated by PA. The effect on POPG hydrochlorination increased with the decrease in oil fume concentration. A potential mechanism with respect to the chain length of these oil fumes, regardless of their saturation, was proposed. PA with a short carbon chain looses the POPG packing and leads to the exposure of the C=C double bonds of POPG, whereas OA and LA with a long carbon chain hinder HOCl from reaching the C=C bonds of POPG. These results for short chain and low concentration dependence suggest that the decay of oil fumes or the conversion of short-chain species by indoor interfacial chemistry might be adverse to lung health. These results provide insights into the relationship between indoor multicomponent pollutants and the respiratory system.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácidos Graxos , Ácidos Graxos/química , Ácido Hipocloroso/química , Culinária , Fosfolipídeos/química
14.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791523

RESUMO

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Assuntos
Transportador de Glucose Tipo 1 , Glicoconjugados , Simulação de Dinâmica Molecular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucose/metabolismo , Transporte Biológico , Termodinâmica
15.
Nat Chem Biol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720107

RESUMO

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.

16.
Sci Total Environ ; 934: 173095, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729370

RESUMO

Deep dewatering of Waste Activated Sludge (WAS) through mechanical processes remains inefficient, primarily due to the formation of a stable hydrogen bonding network between the biopolymers and water, which consequently leads to significant water trapped by Extracellular Polymeric Substances (EPS). In this study, a novel and recyclable treatment for WAS based on Ionic Liquids (ILs) was established, named IL-biphasic aqueous system (IL-ABS) treatment. Specifically, the IL-ABS formed in WAS facilitated rapid and efficient in-situ deep dewatering while concurrently recovering hydroxyapatite. The water content decreased from an initial 98.27 % to 65.35 % with IL-ABS, formed by 1-Butyl-3-methylimidazolium bromide (BmimBr) and K3PO4 synthesized from waste H3PO4. Moreover, the recycled BmimBr maintaining the water content of the dewatered sludge consistently between 65.61 % and 67.25 % across five cycles, exhibited remarkable reproducibility. Through three-dimensional excitation-emission matrix, lactate dehydrogenase analyses and confocal laser scanning microscopy, the high concentration of BmimBr in the upper phase effectively disrupted the cells and EPS, which exposed protein and polysaccharide on the EPS surface. Subsequently, the K3PO4 in the lower phase led to an enhanced salting-out effect in WAS. Furthermore, FT-IR analysis revealed that K3PO4 disrupted the original hydrogen bonds between EPS and water. Then, BmimBr formed numerous hydrogen bonds with the sludge flocs, leading to deep dewatering and agglomeration of the sludge flocs during the unique phase separation process of IL-ABS. Notably, sludge-derived hydroxyapatite product exhibited remarkable adsorption capacity for prevalent heavy metal contaminants such as Pb2+, Cd2+ and Cu2+, with efficiencies comparable to those of commercial hydroxyapatite, thereby achieving the resource utilization of waste H3PO4. Moreover, economic calculations demonstrated the suitability of this novel treatment. This innovative treatment exhibits potential for practical applications in the non-mechanical deep dewatering of WAS.

17.
J Environ Manage ; 360: 121207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788408

RESUMO

Sludge is an inevitable waste product of sewage treatment with a high water content and large volume, it poses a significant threat of secondary pollution to both water and the atmosphere without proper disposal. In this regard, dewatering has emerged as an attractive method in sludge treatment, as it can reduce the sludge volume, enhance its transportability and calorific value, and even decrease the production of landfill leachate. In recent years, physical conditioning methods including non-chemical conditioners or energy input alone, have been extensively researched for their potential to enhance sludge dewatering efficiency, such as thermal treatment, freeze-thaw, microwave, ultrasonic, skeleton builders addition, and electro-dewatering, as well as combined methods. The main objective of this paper is to comprehensively evaluate the dewatering capacity of various physical conditioning methods, and identify key factors affecting sludge dewatering efficiency. In addition, future research anticipated directions and outlooks are proposed. This work is expected to provide valuable insights for developing efficient, eco-friendly, and low-energy consumption techniques for deep sludge dewatering.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Água/química
19.
Langmuir ; 40(22): 11491-11503, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770578

RESUMO

Foam flooding is an important tool for reservoir development. This study aims to further investigate the interaction between stimulus-responsive wormlike micelle (WLM)-CO2 foams and crude oil. We performed micromorphology experiments as our major studies and used molecular dynamics simulations as an auxiliary tool for interfacial analysis. We utilized foam generation, liquid separation, and defoaming as the entry points of experimental research and energy as the quantitative assessment index to investigate the dynamic process of the action of different oil contents and oil phase types in a DOAPA@NaSal-H+ foam system. We also examined the role of NaSal in the generation and development of the foam system. Results indicated that the law of crude oil's effect on foam could be summarized as "low contents are beneficial and high contents are harmful." In addition, although the DOAPA@NaSal-H+ foam system has high compatibility for saturated and aromatic hydrocarbons, it is highly suitable for application in reservoir environments with relatively high asphaltene and resin contents. Through combined experimental and simulation approaches, we clarified the law governing the stability of the DOAPA@NaSal-H+ foam system in different oil-containing environments, identified the key role of NaSal, and provided a reference for the targeted application of the DOAPA@NaSal-H+ foam system in different oil reservoirs.

20.
Chem Res Toxicol ; 37(6): 957-967, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38771128

RESUMO

Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.


Assuntos
Brônquios , Carcinógenos , Ciclo Celular , Proliferação de Células , Células Epiteliais , Nicotiana , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Brônquios/citologia , Brônquios/patologia , Brônquios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nicotiana/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Carcinógenos/toxicidade , Nitrosaminas/toxicidade , Linhagem Celular , Movimento Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA