Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Plant Cell Environ ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177516

RESUMO

Long-term pure forest (PF) management and successive planting has result resulted in "low-efficiency artificial forests" in large areas. However, controversy persists over the promoting effect of introduction of broadleaf tree species on production efficiency of PF. This study hypothesised that introduced broadleaf tree species can significantly promote both water-nutrient use efficiency and gross primary productivity (GPP)of PF. Tree ring chronologies, water source, water use efficiency and GPP were analysed in coniferous Cunninghamia lanceolata and broadleaved Phoebe zhennan growing over the past three decades. The introduction of P. zhennan into C. lanceolata plantations resulted in inter-specific competition for water, probably because of the similarity of the main water source of these two tree species. However, C. lanceolata absorbed more water with a higher nutrient level from the 40-60-cm soil layer in mixed forests (MF). Although the co-existing tree species limited the basal area increment and growth rates of C. lanceolata in MF plots, the acquisition of dissolved nutrients from the fertile topsoil layer were enhanced; this increased the water use efficiency and GPP of MF plots. To achieve better ecological benefits and GPP, MFs should be constructed in southern China.

2.
Bioorg Med Chem ; 111: 117847, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121679

RESUMO

Pyridazine, as a privileged scaffold, has been extensively utilized in drug development due to its multiple biological activities. Especially around its distinctive anticancer property, a massive number of pyridazine-containing compounds have been synthesized and evaluated that target a diverse array of biological processes involved in cancer onset and progression. These include glutaminase 1 (GLS1) inhibitors, tropomyosin receptor kinase (TRK) inhibitors, and bromodomain containing protein (BRD) inhibitors, targeting aberrant tumor metabolism, cell signal transduction and epigenetic modifications, respectively. Pyridazine moieties functioned as either core frameworks or warheads in the above agents, exhibiting promising potential in cancer treatment. Therefore, the review aims to summarize the recent contributions of pyridazine derivatives as potent anticancer agents between 2020 and 2024, focusing mainly on their structure-activity relationships (SARs) and development strategies, with a view to show that the application of the pyridazine scaffold by different medicinal chemists provides new insights into the rational design of anticancer drugs.


Assuntos
Antineoplásicos , Piridazinas , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Relação Estrutura-Atividade , Química Farmacêutica , Estrutura Molecular , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
3.
Rice (N Y) ; 17(1): 49, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126552

RESUMO

Strong early growth vigor is an essential target in both direct seeded rice breeding and high-yielding rice breeding for rice varieties with relatively short growth duration in the double-cropping region. Shoot dry weight (SDW) is one of the important traits associated with early growth vigor, and breeders have been working to improve this trait. Finding stable QTLs or functional genes for SDW is crucial for improving the early growth vigor by implementing molecular breeding in rice. Here, a genome-wide association analysis revealed that the QTL for SDW, qSDW-5, was stably detected in the three cultivation methods commonly used in production practice. Through gene-based haplotype analysis of the annotated genes within the putative region of qSDW-5, and validated by gene expression and knockout transgenic experiments, LOC_Os05g09520, which is identical to the reported GW5/GSE5 controlling grain width (GW) and thousand grain weight (TGW) was identified as the causal gene for qSDW-5. Five main haplotypes of LOC_Os05g09520 were identified in the diverse international rice collection used in this study and their effects on SDW, GW and TGW were analyzed. Phenotypic comparisons of the major haplotypes of LOC_Os05g09520 in the three subpopulations (indica, japonica and aus) revealed the same patterns of wider GW and higher TGW along with higher SDW. Furtherly, the haplotype analysis of 138 rice varieties/lines widely used in southern China showed that 97.8% of the cultivars/lines carry Hap2LOC_Os05g09520. These results not only provide a promising gene source for the molecular breeding of rice varieties with strong early growth vigor, but also elucidate the effect of the LOC_Os05g09520 haplotypes on SDW, GW, and TGW in rice. Importantly, this study provides direct genetic evidence that these three traits are significantly correlated, and suggests a breeding strategy for developing high-yielding and slender grain-shaped indica cultivars with strong early growth vigor.

4.
Sci Total Environ ; 952: 175533, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39155013

RESUMO

In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.


Assuntos
Chuva Ácida , Cádmio , Microplásticos , Oryza , Plântula , Poluentes do Solo , Oryza/efeitos dos fármacos , Oryza/genética , Plântula/efeitos dos fármacos , Cádmio/toxicidade , Chuva Ácida/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica
5.
Environ Pollut ; 360: 124639, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095000

RESUMO

The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Biodiversidade
6.
J Environ Manage ; 368: 122210, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146649

RESUMO

The positive contributions of carriers to aerobic granulation have been wildly appreciated. In this study, as a way resource utilization, the dredged sediment was thermally-treated to prepared as carriers to promote aerobic granular sludge (AGS) formation and stability. The system was started under low superficial gas velocity (SGV, 0.6 cm/s)for a lower energy consumption. Two sequencing batch reactors (SBR) labeled R1 (no added carriers) and R2 (carriers added), were used in the experiment. R2 had excellent performance of granulation time (shortened nearly 43%). The maximum mean particle size at the maturity stage of AGS in R2 (0.545 mm) was larger compared to R1 (0.296 mm). The sludge settling performance in R2 was better. The reactors exhibited high chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal rates. The total phosphorus (TP) removal rate in R2 was higher than R1 (almost 15% higher) on stage II (93-175d). R2 had a higher microbial abundance and dominant bacteria content. The relative abundance of dominant species was mainly affected by the carrier. However, the enrichment of dominant microorganisms and the evolution of subdominant species were more influenced by the increase of SGV. The results indicated that the addition of carriers induced the secretion of extracellular polymeric substances (EPS) by microorganisms and accelerated the rapid formation of initial microbial aggregates. This work provided a low-cost method and condition to enhance aerobic granulation, which may be helpful in optimizing wastewater treatment processes.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Fósforo , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Aerobiose
7.
Angew Chem Int Ed Engl ; : e202409193, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985085

RESUMO

The limited oxidation stability of ether solvents has posed significant challenges for their applications in high-voltage lithium metal batteries (LMBs). To tackle this issue, the prevailing strategy either adopts a high concentration of fluorinated salts or relies on highly fluorinated solvents, which will significantly increase the manufacturing cost and create severe environmental hazards. Herein, an alternative and sustainable salt engineering approach is proposed to enable the utilization of dilute electrolytes consisting of fluorine (F)-free ethers in high-voltage LMBs. The proposed 0.8 M electrolyte supports stable lithium plating-stripping with a high Coulombic efficiency of 99.47 % and effectively mitigates the metal dissolution, phase transition, and gas release issues of the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode upon charging to high voltages. Consequently, the 4.5 V high-loading Li||NCM 811 cell shows a capacity retention of 75.2 % after 300 cycles. Multimodal experimental characterizations coupled with theoretical investigations demonstrate that the boron-containing salt plays a pivotal role in forming the passivation layers on both anode and cathode. The present simple and cost-effective electrolyte design strategy offers a promising and alternative avenue for using commercially mature, environmentally benign, and low-cost F-free ethers in high-voltage LMBs.

8.
J Hazard Mater ; 477: 135129, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053066

RESUMO

The increasing accumulation of microplastics (MPs) in agroecosystems has raised significant environmental and public health concerns, facilitating the application of biodegradable plastics. However, the comparative effects of conventional and biodegradable MPs in agroecosystem are still far from fully understood. Here we developed microcosm experiments to reveal the ecological effects of conventional (polyethylene [PE] and polypropylene [PP]) and biodegradable (polyadipate/butylene terephthalate [PBAT] and polycaprolactone [PCL]) MPs (0, 1%, 5%; w/w) in the maize-soil ecosystem. We found that PCL MPs reduced plant production by 73.6-75.2%, while PE, PP and PBAT MPs elicited almost negligible change. The addition of PCL MPs decreased specific enzyme activities critical for soil nutrients cycling by 71.5-95.3%. Biodegradable MPs tended to reduce bacterial α-diversity. The 1% treatments of PE and PBAT, and PCL enhanced bacterial networks complexity, whereas 5% of PE and PBAT, and PP had adverse effect. Moreover, biodegradable MPs appeared to reduce the α-diversity and networks complexity of fungal community. Overall, PCL reduced the ecosystem multifunctionality, mainly by inhibiting the microbial metabolic activity. This study offers evidence that biodegradable MPs can impair agroecosystem multifunctionality, and highlights the potential risks to replace the conventional plastics by biodegradable ones in agricultural practices.


Assuntos
Ecossistema , Microplásticos , Poluentes do Solo , Zea mays , Zea mays/metabolismo , Microplásticos/toxicidade , Poluentes do Solo/análise , Biodegradação Ambiental , Poliésteres/metabolismo , Plásticos Biodegradáveis , Microbiologia do Solo , Fungos/metabolismo , Bactérias/metabolismo , Solo/química , Polipropilenos
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 503-510, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932536

RESUMO

Automatic detection of pulmonary nodule based on computer tomography (CT) images can significantly improve the diagnosis and treatment of lung cancer. However, there is a lack of effective interactive tools to record the marked results of radiologists in real time and feed them back to the algorithm model for iterative optimization. This paper designed and developed an online interactive review system supporting the assisted diagnosis of lung nodules in CT images. Lung nodules were detected by the preset model and presented to doctors, who marked or corrected the lung nodules detected by the system with their professional knowledge, and then iteratively optimized the AI model with active learning strategy according to the marked results of radiologists to continuously improve the accuracy of the model. The subset 5-9 dataset of the lung nodule analysis 2016(LUNA16) was used for iteration experiments. The precision, F1-score and MioU indexes were steadily improved with the increase of the number of iterations, and the precision increased from 0.213 9 to 0.565 6. The results in this paper show that the system not only uses deep segmentation model to assist radiologists, but also optimizes the model by using radiologists' feedback information to the maximum extent, iteratively improving the accuracy of the model and better assisting radiologists.


Assuntos
Algoritmos , Diagnóstico por Computador , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Diagnóstico por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Aprendizado de Máquina
10.
Biology (Basel) ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927265

RESUMO

The earthworm, as a soil engineer, plays highly important roles in the soil ecosystem for shaping soil structure, promoting soil fertility, regulating microbial community composition and activities and decomposing soil pollutants. However, the research progresses on this important soil fauna have rarely been reviewed so far. Therefore, we conducted a bibliometric analysis of the literature published during 1900-2022, which was collected from the Web of Science Core Collection (WoS). The results showed that three periods (1900-1990, 1991-2005 and 2006-2022) could be identified in terms of the intensity of publications on the topic, and the number of publications kept increasing since 2006. The United States produced the highest publication record at the country scale, whereas Chinese Academy of Sciences was the most productive institution. Chinese institutions and authors played an active and prominent role during 2018-2022. Soil Biology & Biochemistry was the most popular journal for the topic-related research. In these publications, Professor Lavelle P was the most influential author. Based on a citation network of the top 50 cited papers, four hotspots were identified, i.e., the ecological effects of earthworms, the impact of agricultural activities on earthworms, earthworm ecotoxicology and earthworm invasion. Moreover, "impact", "biodiversity", "oxidative stress", "diversity", "response", "Eisenia fetida" and "exposure" were the emerging and active topics in recent years. This study can help us to better understand the relevant subject categories, journals, countries, institutions, authors and articles and identify the research hotspots and emerging trends in the field of soil earthworm research.

11.
Medicine (Baltimore) ; 103(25): e38596, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905408

RESUMO

BACKGROUND: Diabetic Macular Edema (DME) significantly impairs vision in diabetics, with varied patient responses to current treatments like anti-vascular endothelial growth factor (VEGF) therapy underscoring the necessity for continued research into more effective strategies. This study aims to evaluate global research trends and identify emerging frontiers in DME to guide future research and clinical management. METHODS: A qualitative and quantitative analysis of publications related to diabetic macular edema retrieved from the Web of Science Core Collection (WoSCC) between its inception and September 4, 2023, was conducted. Microsoft Excel, CiteSpace, VOSviewer, Bibliometrix Package, and Tableau were used for the bibliometric analysis and visualization. This encompasses an examination of the overall distribution of annual output, major countries, regions, institutions, authors, core journals, co-cited references, and keyword analyses. RESULTS: Overall, 5624 publications were analyzed, indicating an increasing trend in DME research. The United States was identified as the leading country in DME research, with the highest h-index of 135 and 91,841 citations. Francesco Bandello emerged as the most prolific author with 97 publications. Neil M. Bressler has the highest h-index and highest total citation count of 46 and 9692, respectively. The journals "Retina - the Journal of Retinal and Vitreous Diseases" and "Ophthalmology" were highlighted as the most prominent in this field. "Retina" leads with 354 publications, a citation count of 11,872, and an h-index of 59. Meanwhile, "Ophthalmology" stands out with the highest overall citation count of 31,558 and the highest h-index of 90. The primary research focal points in diabetic macular edema included "prevalence and risk factors," "pathological mechanisms," "imaging modalities," "treatment strategies," and "clinical trials." Emerging research areas encompassed "deep learning and artificial intelligence," "novel treatment modalities," and "biomarkers." CONCLUSION: Our bibliometric analysis delineates the leading role of the United States in DME research. We identified current research hotspots, including epidemiological studies, pathophysiological mechanisms, imaging advancements, and treatment innovations. Emerging trends, such as the integration of artificial intelligence and novel therapeutic approaches, highlight future directions. These insights underscore the importance of collaborative and interdisciplinary approaches in advancing DME research and clinical management.


Assuntos
Bibliometria , Retinopatia Diabética , Edema Macular , Edema Macular/epidemiologia , Edema Macular/tratamento farmacológico , Humanos , Pesquisa Biomédica/tendências , Pesquisa Biomédica/estatística & dados numéricos
12.
Water Res ; 256: 121586, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631240

RESUMO

Thermal driven membrane distillation (MD) technology is a promising method for purifying & recovering various salty (especially high salty) or contaminated wastewaters with low-grade heat sources. However, the drawbacks of "high energy consumption" and "high cooling water consumption" pose special challenges for the future development of this technology. In this article, we report an innovative strategy called "in-situ heat transfer", which is based on the jacketed structure composed of hollow fiber membranes and capillary heat exchange tubes, to simplify the migration steps of condensation latent heat in MD heat recovery process. The results indicate that the novel heat recovery strategy exhibits higher growth rates both in the flux and gained output ratio (47.4 % and 173.1 %, respectively), and further reduces the system's dependence on cooling water. In sum, under the control of the "in-situ heat transfer" mechanism, the functional coupling of "vapor condensation (exothermic)" and "feed evaporation (endothermic)" in limited-domain space is an attractive alternative solution, because it eliminates the disadvantages of the imbalance between heat supply and demand in traditional heat recovery methods. Our research may facilitate the development of MD heat recovery modules for industrial applications, which will help to further achieve the goal of energy saving and emission reduction.


Assuntos
Destilação , Temperatura Alta , Membranas Artificiais , Destilação/métodos , Vácuo , Purificação da Água/métodos , Águas Residuárias/química , Água/química
13.
Front Neurosci ; 18: 1368957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686328

RESUMO

Background: Internal carotid artery stenosis (ICAS) is a prevalent vascular condition associated with ischemic cerebrovascular disease. The ophthalmic artery is the first branch of the internal carotid artery stenosis (ICA). Given the crucial role of the ICA in ocular perfusion, we aimed to assess the thickness and vessel density of the retina and choroid in individuals with ICAS. Methods: The PubMed and Embase databases were searched from inception to 10 January 2023 for studies evaluating retinal and choroidal changes between ICAS patients and healthy controls using optical coherence tomography (OCT) or optical coherence tomography angiography (OCTA). Data of interest were extracted and analyzed using Stata software version 16. Results: Thirteen studies involving 419 ICAS eyes and 398 healthy eyes were included. The pooled results demonstrated that the average thickness of peripapillary retinal nerve fiber layer (pRNFL) (WMD = -0.26, 95% CI: -0.45 to -0.08, P = 0.005), ganglion cell complex (GCC) (WMD = -0.36, 95% CI: -0.65 to -0.06, P = 0.017), and choroid (WMD = -1.06, 95% CI: -1.59 to -0.52, P = 0.000), were significantly thinner in patients with ICAS than in healthy controls. The overall vessel density of the radial peripapillary capillaries (RPC) in whole-image scans was lower in ICAS patients than in healthy control subjects (WMD = -0.94, 95% CI: -1.49 to -0.39, P = 0.001). No differences were detected in the vessel density of the superficial capillary plexus (SCP) (WMD = -0.84, 95% CI: -1.15 to -0.53, P = 0.092), the deep capillary plexus (DCP) (WMD = -0.27, 95% CI: -0.56 to 0.03, P = 0.074), or the choriocapillaris (CC) (WMD = -0.39, 95% CI: -1.12 to 0.35, P = 0.300). Conclusion: This systematic review and meta-analysis demonstrated that ICAS can reduce the vessel density of the RPC and the thickness of the retina and choroid. The retinal and choroidal microvasculature is a potential biomarker of the initial signal of ICAS. Systematic review registration: https://inplasy.com/, identifier NPLASY202410038.

14.
Rice (N Y) ; 17(1): 21, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526756

RESUMO

Strong seedling vigor is imperative to achieve stable seedling establishment and enhance the competitiveness against weeds in rice direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor in rice, but few genes for SL have been cloned so far. In the previous study, we identified two tightly linked and stably expressed QTLs for SL, qSL-1f and qSL-1d by genome-wide association study, and cloned the causal gene (LOC_Os01g68500) underlying qSL-1f. In the present study, we identify LOC_Os01g66100 (i.e. the semidwarf gene SD1), a well-known gene controlling plant height (PH) at the adult-plant stage, as the causal gene underlying qSL-1d through gene-based haplotype analysis and knockout transgenic verification. By measuring the phenotypes (SL and PH) of various haplotypes of the two genes and their knockout lines, we found SD1 and LOC_ Os01g68500 controlled both SL and PH, and worked in the same direction, which provided the directly genetic evidence for a positive correlation between SL and PH combined with the analysis of SL and PH in the diverse natural population. Moreover, the knockout transgenic experiments suggested that SD1 had a greater effect on PH compared with LOC_ Os01g68500, but no significant difference in the effect on SL. Further investigation of the pyramiding effects of SD1 and LOC_Os01g68500 based on their haplotype combinations suggested that SD1 may play a dominant role in controlling SL and PH when the two genes coexist. In this study, the effect of SD1 on SL at the seedling stage is validated. In total, two causal genes, SD1 and LOC_ Os01g68500, for SL are cloned in our studies, which controlled both SL and PH, and the suitable haplotypes of SD1 and LOC_ Os01g68500 are beneficial to achieve the desired SL and PH in different rice breeding objectives. These results provide a new clue to develop rice varieties for direct seeding and provide new genetic resources for molecular breeding of rice with suitable PH and strong seedling vigor.

15.
Medicine (Baltimore) ; 103(4): e36888, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277550

RESUMO

RATIONALE: Endovascular embolization has been widely applied in carotid artery aneurysm due to less trauma and simpler procedures than open surgery. Sudden cardiac arrest is a rare event that may cause severe consequences during endovascular embolization. Risk factors of perioperative cardiac arrest include cardiac surgery, younger age, comorbid conditions, and emergency surgery. PATIENT CONCERNS: A 62-year-old male patient had hypertension for 15 years and experienced sudden cardiac arrest of pulseless electrical activity during endovascular embolization. DIAGNOSES: He was diagnosed with a 3.5 × 2.5 mm aneurysm. INTERVENTIONS: Chest compression and effective interventions were given. OUTCOMES: He was resuscitated by cardiopulmonary resuscitation and systematic therapy. LESSONS: This case may provide experience in the management of sudden cardiac arrest during endovascular embolization of a carotid artery aneurysm.


Assuntos
Aneurisma , Doenças das Artérias Carótidas , Embolização Terapêutica , Procedimentos Endovasculares , Masculino , Humanos , Pessoa de Meia-Idade , Aneurisma/cirurgia , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Doenças das Artérias Carótidas/complicações , Doenças das Artérias Carótidas/terapia , Morte Súbita Cardíaca/etiologia , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Artéria Carótida Interna/cirurgia
16.
J Virol ; 98(1): e0135923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084959

RESUMO

Phage therapy has shown great promise for the treatment of multidrug-resistant bacterial infections. However, the lack of a thorough and organized understanding of phage-body interactions has limited its clinical application. Here, we administered different purified phages (Salmonella phage SE_SZW1, Acinetobacter phage AB_SZ6, and Pseudomonas phage PA_LZ7) intravenously to healthy animals (rats and monkeys) to evaluate the phage-induced host responses and phage pharmacokinetics with different intravenous (IV) doses in healthy animals. The plasma and the organs were sampled after different IV doses to determine the phage biodistribution, phage-induced cytokines, and antibodies. The potential side effects of phages on animals were assessed. A non-compartment model revealed that the plasma phage titer gradually decreased over time following a single dose. Repeated doses resulted in a 2-3 Log10 decline of the plasma phage titer at 5 min compared to the first dose, regardless of the type of phage administered in rats. Host innate immune responses were activated including splenic enlargement following repeated doses. Phage-specific neutralization antibodies in animals receiving phages were detected. Similar results were obtained from monkeys. In conclusion, the mammalian bodies were well-tolerant to the administered phages. The animal responses to the phages and the phage biodistribution profiles could have a significant impact on the efficacy of phage therapy.IMPORTANCEPhage therapy has demonstrated potential in addressing multidrug-resistant bacterial infections. However, an insufficient understanding of phage-host interactions has impeded its broader clinical application. In our study, specific phages were administered intravenously (IV) to both rats and monkeys to elucidate phage-host interactions and evaluate phage pharmacokinetics (PK). Results revealed that with successive IV administrations, there was a decrease in plasma phage concentrations. Concurrently, these administrations elicited both innate and adaptive immune responses in the subjects. Notably, the observed immune responses and PK profiles exhibited variation contingent upon the phage type and the mammalian host. Despite these variations, the tested mammals exhibited a favorable tolerance to the IV-administered phages. This underscores the significance of comprehending these interactions for the optimization of phage therapy outcomes.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Animais , Humanos , Ratos , Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Mamíferos , Fagos de Pseudomonas , Distribuição Tecidual , Farmacorresistência Bacteriana Múltipla
17.
Environ Sci Pollut Res Int ; 31(2): 2569-2582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066269

RESUMO

Investigating habitat quality under different climate scenarios holds significant importance for sustainable land resource management and ecological conservation. In this study, considering Nanchang as a case study, a coupled patch-generating land use simulation (PLUS) and system dynamics (SD) model was employed in the simulation and prediction of land usage under shared socioeconomic pathway (SSP) and representative concentration pathway (RCP) scenarios. To assess the habitat quality in Nanchang from 2000 to 2020 and in 2030 under three diverse climate scenarios, we used the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to analyze spatial and temporal changes. The findings indicate that the regions of forest land, cultivated land, and grassland in Nanchang City will dramatically decrease by 2030, the construction land will rapidly expand, and the fluctuations in the unutilized land and water area will be minimal. Additionally, the habitat quality declined from 2000 to 2020, and its spatial distributions changed. Zones having a high overall habitat quality were distributed in the mountains, hills, and lake areas, whereas those with relatively low quality were found in cultivated and urban areas. Under three climate scenarios, in 2030, the habitat quality index for Nanchang City will show a decreasing trend, mainly owing to areas with an index of 0.3-0.5 transitioning to <0.3. Considering each scenario, the degree of habitat degradation increased in the order SSP585>SSP245>SSP119. The findings of this study will inform high-quality development and biodiversity conservation in Nanchang City.


Assuntos
Mudança Climática , Ecossistema , Conservação dos Recursos Naturais , Florestas , China
18.
Microbiol Spectr ; 12(1): e0188223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014983

RESUMO

IMPORTANCE: Phage therapy is gaining traction as an alternative to antibiotics due to the rise of multi-drug-resistant (MDR) bacteria. This study assessed the pharmacokinetics and safety of PA_LZ7, a phage targeting MDR Pseudomonas aeruginosa, in mice. After intravenous administration, the phage showed an exponential decay in plasma and its concentration dropped significantly within 24 h for all dosage groups. Although there was a temporary increase in certain plasma cytokines and spleen weight at higher dosages, no significant toxicity was observed. Therefore, PA_LZ7 shows potential as an effective and safe candidate for future phage therapy against MDR P. aeruginosa infections.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Fagos de Pseudomonas , Animais , Camundongos , Fagos de Pseudomonas/genética , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
19.
J Hazard Mater ; 464: 132947, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956563

RESUMO

Treatment of industrial thallium(Tl)-containing wastewater is crucial for mitigating environmental risks and health threats associated with this toxic metal. The incorporation of Mn oxides (MnOx) into the filtration system is a promising solution for efficient Tl(I) removal. However, further research is needed to elucidate the underlying mechanism behind MnOx-enhanced filtration and the rules of its stable operation. In this study, limestone, a cost-effective material, was selected as the filter media. Raw water with Mn(II), Tl(I), and other pollutants was prepared after a thorough investigation of actual industrial wastewater conditions. KMnO4 was added to induce the formation of MnO2 on limestone surfaces, while long-term operation led to enrichment of manganese oxidizing microorganisms (MnOM). Results revealed a dual mechanism. Firstly, most Mn(II) were oxidized by KMnO4 to form MnO2 attaching to limestone sands, and both Tl(I) and residual Mn(II) were adsorbed onto the newly formed MnO2. Subsequently, enzymes secreted by MnOM facilitated oxidation of remaining Mn(II), resulting in the generation of biogenic manganese oxides (BioMnOx) with numerous vacancies during long-term operation. The generated BioMnOx not only adsorbed Mn(II) and Tl(I) but also promoted their oxidation process. This approach offers an effective and sustainable method for removing both Mn(II) and Tl(I) from industrial wastewater, thereby addressing the challenges posed by thallium-contaminated effluents.


Assuntos
Compostos de Manganês , Óxidos , Óxidos/química , Compostos de Manganês/química , Tálio , Manganês , Águas Residuárias , Carbonato de Cálcio , Oxirredução
20.
Environ Int ; 183: 108360, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128384

RESUMO

Although pervasive microplastics (MPs) pollution in terrestrial ecosystems invites increasing global concern, impact of MPs on soil microbial community assembly and ecosystem multifunctionality received relatively little attention. Here, we manipulated a mesocosm experiment to investigate how polyethylene MPs (PE MPs; 0, 1%, and 5%, w/w) influence ecosystem functions including plant production, soil quality, microbial community diversity and assembly, enzyme activities in carbon (C), nitrogen (N) and phosphorus (P) cycling, and multifunctionality in the maize-soil continuum. Results showed that PE MPs exerted negligible effect on plant biomass (dry weight). The treatment of 5% PE MPs caused declines in the availability of soil water, C and P, whereas enhanced soil pH and C storage. The activity of C-cycling enzymes (α/ß-1, 4-glucosidase and ß-D-cellobiohydrolase) was promoted by 1% PE MPs, while that of ß-1, 4-glucosidase was inhibited by 5% PE MPs. The 5% PE MPs reduced the activity of N-cycling enzymes (protease and urease), whereas increased that of the P-cycling enzyme (alkaline phosphatase). The 5% PE MPs shifted soil microbial community composition, and increased the number of specialist species, microbial community stability and networks resistance. Moreover, PE MPs altered microbial community assembly, with 5% treatment decreasing dispersal limitation proportion (from 13.66% to 9.96%). Overall, ecosystem multifunctionality was improved by 1% concentration, while reduced by 5% concentration of PE MPs. The activity of α/ß-1, 4-glucosidase, urease and protease, and ammonium-N content were the most important predictors of ecosystem multifunctionality. These results underscore that PE MPs can alter soil microbial community assembly and ecosystem multifunctionality, and thus development and implementation of practicable solutions to control soil MPs pollution become increasingly imperative in sustainable agricultural production.


Assuntos
Microbiota , Microplásticos , Ecossistema , Solo/química , Plásticos , Polietileno , Urease , Microbiologia do Solo , Peptídeo Hidrolases , Glucosidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA