RESUMO
In this work, we have proposed and fabricated a metal/Ga2O3/GaN hybrid structure metal-semiconductor-metal ultraviolet photodetector with low dark current and high responsivity. The Schottky contact of Ni/Ga2O3 makes the Ga2O3 layer fully depleted. The strong electric field in the Ga2O3 depletion region can push the photo-induced electrons from the Ga2O3 layer into the GaN layer for more efficient carrier transport. Therefore, the hybrid structure simultaneously utilizes the advantage of the absorption to solar-blind ultraviolet light by the Ga2O3 layer and the high electron mobility of the GaN layer. Thus, the dark current and the photocurrent for the proposed device can be greatly improved. As a result, an extremely high photo-to-dark-current ratio of 1.46 × 106 can be achieved. Furthermore, quick rise and fall times of 0.213â s and 0.027â s at the applied bias of 6â V are also obtained, respectively.