Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695804

RESUMO

Uric acid is the main means of nitrogen excretion in uricotelic vertebrates (birds and reptiles) and the end product of purine catabolism in humans and a few other mammals. While uricase is inactivated in mammals unable to degrade urate, the presence of orthologous genes without inactivating mutations in avian and reptilian genomes is unexplained. Here we show that the Gallus gallus gene we name cysteine-rich urate oxidase (CRUOX) encodes a functional protein representing a unique case of cysteine enrichment in the evolution of vertebrate orthologous genes. CRUOX retains the ability to catalyze urate oxidation to hydrogen peroxide and 5-hydroxyisourate (HIU), albeit with a 100-fold reduced efficiency. However, differently from all uricases hitherto characterized, it can also facilitate urate regeneration from HIU, a catalytic property that we propose depends on its enrichment in cysteine residues. X-ray structural analysis highlights differences in the active site compared to known orthologs and suggests a mechanism for cysteine-mediated self-aggregation under H2O2-oxidative conditions. Cysteine enrichment was concurrent with the transition to uricotelism and a shift in gene expression from the liver to the skin where CRUOX is co-expressed with ß-keratins. Therefore, the loss of urate degradation in amniotes has followed opposite evolutionary trajectories: while uricase has been eliminated by pseudogenization in some mammals, it has been repurposed as a redox-sensitive enzyme in the reptilian skin.


Assuntos
Cisteína , Répteis , Pele , Urato Oxidase , Animais , Cisteína/genética , Peróxido de Hidrogênio , Pele/enzimologia , Urato Oxidase/genética , Urato Oxidase/metabolismo , Ácido Úrico , Galinhas/genética , Répteis/genética , Répteis/metabolismo
2.
ACS Bio Med Chem Au ; 3(1): 32-45, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101607

RESUMO

Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.

3.
Front Mol Biosci ; 9: 900882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860359

RESUMO

Trypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability. To aid the design of effective compounds targeting TR, we performed a fragment-based crystal screening at the Diamond Light Source XChem facility using a library optimized for follow-up synthesis steps. The experiment, allowing for testing over 300 compounds, resulted in the identification of 12 new ligands binding five different sites. Interestingly, the screening revealed the existence of an allosteric pocket close to the NADPH binding site, named the "doorstop pocket" since ligands binding at this site interfere with TR activity by hampering the "opening movement" needed to allow cofactor binding. The second remarkable site, known as the Z-site, identified by the screening, is located within the large trypanothione cavity but corresponds to a region not yet exploited for inhibition. The fragments binding to this site are close to each other and have some remarkable features making them ideal for follow-up optimization as a piperazine moiety in three out of five fragments.

4.
Nat Chem Biol ; 17(12): 1216-1217, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34556864
5.
Annu Rev Microbiol ; 75: 383-406, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343020

RESUMO

Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo , Sistemas do Segundo Mensageiro
6.
ACS Chem Biol ; 13(8): 2237-2246, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29874034

RESUMO

Humans have lost the ability to convert urate into the more soluble allantoin with the evolutionary inactivation of three enzymes of the uricolytic pathway. Restoration of this function through enzyme replacement therapy can treat severe hyperuricemia and Lesch-Nyhan disease. Through a genomic exploration of natural gene fusions, we found that plants and diatoms independently evolved a fusion protein (allantoin synthase) complementing two human pseudogenes. The 1.85-Å-resolution crystal structure of allantoin synthase from the diatom Phaeodactylum tricornutum provides a rationale for the domain combinations observed in the metabolic pathway, suggesting that quaternary structure is key to the evolutionary success of protein domain fusions. Polyethylene glycol (PEG) conjugation experiments indicate that a PEG-modified form of the natural fusion protein provides advantages over separate enzymes in terms of activity maintenance and manufacturing of the bioconjugate. These results suggest that the combination of different activities in a single molecular unit can simplify the production and chemical modification of recombinant proteins for multifunctional enzyme therapy.


Assuntos
Alantoína/metabolismo , Diatomáceas/enzimologia , Ligases/metabolismo , Vias Biossintéticas , Cristalografia por Raios X , Diatomáceas/química , Diatomáceas/genética , Diatomáceas/metabolismo , Estabilidade Enzimática , Fusão Gênica , Ligases/química , Ligases/genética , Modelos Moleculares , Polietilenoglicóis/química , Conformação Proteica
7.
Pharm Res ; 34(7): 1477-1490, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28508122

RESUMO

PURPOSE: Because of the evolutionary loss of the uricolytic pathway, humans accumulate poorly soluble urate as the final product of purine catabolism. Restoration of uricolysis through enzyme therapy is a promising treatment for severe hyperuricemia caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). To this end, we studied the effect of PEG conjugation on the activity and stability of the enzymatic complement required for conversion of urate into the more soluble (S)-allantoin. METHODS: We produced in recombinant form three zebrafish enzymes required in the uricolytic pathway. We carried out a systematic study of the effect of PEGylation on the function and stability of the three enzymes by varying PEG length, chemistry and degree of conjugation. We assayed in vitro the uricolytic activity of the PEGylated enzymatic triad. RESULTS: We defined conditions that allow PEGylated enzymes to retain native-like enzymatic activity even after lyophilization or prolonged storage. A combination of the three enzymes in an appropriate ratio allowed efficient conversion of urate to (S)-allantoin with no accumulation of intermediate metabolites. CONCLUSIONS: Pharmaceutical restoration of the uricolytic pathway is a viable approach for the treatment of severe hyperuricemia.


Assuntos
Amidoidrolases/química , Carboxiliases/química , Hipoxantina Fosforribosiltransferase/deficiência , Síndrome de Lesch-Nyhan/tratamento farmacológico , Polietilenoglicóis/química , Urato Oxidase/química , Uricosúricos/química , Alantoína/química , Animais , Terapia Enzimática , Humanos , Hiperuricemia/tratamento farmacológico , Peso Molecular , Proteínas Recombinantes/química , Solubilidade , Estereoisomerismo , Ácido Úrico/química , Peixe-Zebra
8.
Sci Rep ; 6: 38302, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922051

RESUMO

Urate oxidase (Uox) catalyses the first reaction of oxidative uricolysis, a three-step enzymatic pathway that allows some animals to eliminate purine nitrogen through a water-soluble compound. Inactivation of the pathway in hominoids leads to elevated levels of sparingly soluble urate and puts humans at risk of hyperuricemia and gout. The uricolytic activities lost during evolution can be replaced by enzyme therapy. Here we report on the functional and structural characterization of Uox from zebrafish and the effects on the enzyme of the missense mutation (F216S) that preceded Uox pseudogenization in hominoids. Using a kinetic assay based on the enzymatic suppression of the spectroscopic interference of the Uox reaction product, we found that the F216S mutant has the same turnover number of the wild-type enzyme but a much-reduced affinity for the urate substrate and xanthine inhibitor. Our results indicate that the last functioning Uox in hominoid evolution had an increased Michaelis constant, possibly near to upper end of the normal range of urate in the human serum (~300 µM). Changes in the renal handling of urate during primate evolution can explain the genetic modification of uricolytic activities in the hominoid lineage without the need of assuming fixation of deleterious mutations.


Assuntos
Hiperuricemia/genética , Mutação de Sentido Incorreto , Urato Oxidase/química , Ácido Úrico/química , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Biocatálise , Evolução Biológica , Cristalografia por Raios X , Expressão Gênica , Humanos , Hylobates/genética , Hylobates/metabolismo , Hiperuricemia/enzimologia , Hiperuricemia/patologia , Cinética , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Peixe-Zebra/genética
9.
Biochemistry ; 55(46): 6421-6432, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27797489

RESUMO

The S enantiomer of allantoin is an intermediate of purine degradation in several organisms and the final product of uricolysis in nonhominoid mammals. Bioinformatics indicated that proteins of the Asp/Glu racemase superfamily could be responsible for the allantoin racemase (AllR) activity originally described in Pseudomonas species. In these proteins, a cysteine of the catalytic dyad is substituted with glycine, yet the recombinant enzyme displayed racemization activity with a similar efficiency (kcat/KM ≈ 5 × 104 M-1 s-1) for the R and S enantiomers of allantoin. The protein crystal structure identified a glutamate residue located three residues downstream (E78) that can functionally replace the missing cysteine; the catalytic role of E78 was confirmed by site-directed mutagenesis. Allantoin can undergo racemization through formation of a bicyclic intermediate (faster) or proton exchange at the chiral center (slower). By monitoring the two alternative mechanisms by 13C and 1H nuclear magnetic resonance, we found that the velocity of the faster reaction is unaffected by the enzyme, whereas the velocity of the slower reaction is increased by 7 orders of magnitude. Protein phylogenies trace the origin of the racemization mechanism in enzymes acting on glutamate, a substrate for which proton exchange is the only viable reaction mechanism. This mechanism was inherited by allantoin racemase through divergent evolution and conserved in spite of the substitution of catalytic residues.


Assuntos
Alantoína/química , Proteínas de Bactérias/química , Domínios Proteicos , Racemases e Epimerases/química , Alantoína/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Biocatálise , Dicroísmo Circular , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Evolução Molecular , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Filogenia , Multimerização Proteica , Pseudomonas/enzimologia , Pseudomonas/genética , Racemases e Epimerases/classificação , Racemases e Epimerases/metabolismo , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA