Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599020

RESUMO

BACKGROUND: T cell checkpoint immunotherapies have shown promising results in the clinic, but most patients remain non-responsive. CD47-signal regulatory protein alpha (SIRPα) myeloid checkpoint blockade has shown early clinical activity in hematologic malignancies. However, CD47 expression on peripheral blood limits αCD47 antibody selectivity and thus efficacy in solid tumors. METHODS: To improve the antibody selectivity and therapeutic window, we developed a novel affinity-tuned bispecific antibody targeting CD47 and programmed death-ligand 1 (PD-L1) to antagonize both innate and adaptive immune checkpoint pathways. This PD-L1-targeted CD47 bispecific antibody was designed with potent affinity for PD-L1 and moderate affinity for CD47 to achieve preferential binding on tumor and myeloid cells expressing PD-L1 in the tumor microenvironment (TME). RESULTS: The antibody design reduced binding on red blood cells and enhanced selectivity to the TME, improving the therapeutic window compared with αCD47 and its combination with αPD-L1 in syngeneic tumor models. Mechanistically, both myeloid and T cells were activated and contributed to antitumor activity of αCD47/PD-L1 bispecific antibody. Distinct from αCD47 and αPD-L1 monotherapies or combination therapies, single-cell RNA sequencing (scRNA-seq) and gene expression analysis revealed that the bispecific treatment resulted in unique innate activation, including pattern recognition receptor-mediated induction of type I interferon pathways and antigen presentation in dendritic cells and macrophage populations. Furthermore, treatment increased the Tcf7+ stem-like progenitor CD8 T cell population in the TME and promoted its differentiation to an effector-like state. Consistent with mouse data, the compounds were well tolerated and demonstrated robust myeloid and T cell activation in non-human primates (NHPs). Notably, RNA-seq analysis in NHPs provided evidence that the innate activation was mainly contributed by CD47-SIRPα but not PD-L1-PD-1 blockade from the bispecific antibody. CONCLUSION: These findings provide novel mechanistic insights into how myeloid and T cells can be uniquely modulated by the dual innate and adaptive checkpoint antibody and demonstrate its potential in clinical development (NCT04881045) to improve patient outcomes over current PD-(L)1 and CD47-targeted therapies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno CD47/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata , Imunoterapia/métodos , Macaca fascicularis , Camundongos , Microambiente Tumoral
2.
Immunity ; 53(2): 319-334.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814027

RESUMO

Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Transferrina/metabolismo , Transferência Adotiva , Animais , Medula Óssea/metabolismo , Linhagem da Célula , Humanos , Masculino , Melanoma/sangue , Camundongos , Camundongos Endogâmicos NOD , Células Progenitoras Mieloides/citologia
3.
Sci Rep ; 9(1): 4497, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872746

RESUMO

Adhesion signaling between epithelial cells and the extracellular matrix plays a critical role in maintaining tissue homeostasis and the response to tissue damage. Focal adhesion kinase (FAK) and its close relative Pyk2 are non-receptor tyrosine kinases that mediate adhesion signaling to promote cell proliferation, motility and survival. FAK has also been shown to act as a mechanosensor by modulating cell proliferation in response to changes in tissue compliance. We previously showed that mice lacking FAK in the intestinal epithelium are phenotypically normal under homeostatic conditions but hypersensitive to experimental colitis induced by dextran sulfate sodium (DSS). Here we report that Pyk2-deficient mice are also phenotypically normal under homeostatic conditions and are similarly hypersensitive to DSS-induced colitis. These data indicate that normal intestinal development and homeostatic maintenance can occur in the presence of either FAK or Pyk2, but that both kinases are necessary for epithelial repair following injury. In contrast, mice lacking both FAK and Pyk2 develop spontaneous colitis with 100% penetrance by 4 weeks of age. Normal colonic phenotype and function are restored upon treatment of the double knockout mice with antibiotics, implicating commensal bacteria or bacterial products in the etiology of the spontaneous colitis exhibited by these mice.


Assuntos
Colite/genética , Quinase 1 de Adesão Focal/genética , Quinase 2 de Adesão Focal/genética , Mucosa Intestinal/citologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células Cultivadas , Colite/tratamento farmacológico , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Quinase 1 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Técnicas de Inativação de Genes , Homeostase , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos
4.
Am J Cancer Res ; 8(4): 675-687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736312

RESUMO

While it has long been recognized that mononuclear phagocytes play a significant role in determining breast tumor progression, the molecular factors that contribute to these events are not fully understood. In this report, we sought to determine whether focal adhesion kinase (FAK) expression in this cell population influences primary breast tumor initiation and growth. Using the MMTV-polyoma middle T (PyVmT) murine model of spontaneous breast cancer, we found that FAK expression in mononuclear phagocytes accelerates tumor initiation/progression during the early stages of PyVmT tumor growth but subsequently restricts tumor growth once the tumors have transitioned to malignancy. Mononuclear phagocytes accumulated at the site of developing tumors in a FAK-independent manner. However, once in the tumor, our data suggest that FAK expression is upregulated in the tumor-associated myeloid cells, and its activity in this population of cells may influence the immune landscape of the tumor by supporting the recruitment and/or survival of NK cells. Together, these data support a model in which FAK expression in the mononuclear phagocyte compartment positively regulates the early steps of tumor progression but subsequently functions to restrict tumor growth as the tumors transition to invasive carcinoma.

5.
J Leukoc Biol ; 102(4): 1069-1080, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754799

RESUMO

Monocytes are short-lived myeloid cells that perform functions essential for tissue homeostasis and disease resolution. However, the cellular mechanisms controlling the maintenance and turnover of monocyte populations are largely undefined. Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine kinase that regulates numerous immune cell functions, but its role in monocytes is currently unknown. In this study, we sought to characterize the expression and function of Pyk2 in lineage-committed monocyte populations. Here, we report that Pyk2 protein expression is increased in the Ly6C- monocyte population. Using a Pyk2 knockout mouse model (Pyk2-/-), we show that Pyk2 regulates the relative proportion of monocyte subsets normally represented in the bone marrow (BM) at steady state. In support of this conclusion, a similar phenotype was observed in the peripheral blood and spleen. Data from reciprocal BM chimera experiments indicate that the alterations in monocyte populations exhibited by Pyk2-/- mice are due to factors intrinsic to the monocytes. Lineage-tracing of monocyte populations suggests that Pyk2 promotes apoptosis in BM monocytes, thereby acting as an important homeostatic regulator of turnover in these short-lived, innate immune cells.


Assuntos
Apoptose/imunologia , Quinase 2 de Adesão Focal/imunologia , Monócitos/imunologia , Animais , Apoptose/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Quinase 2 de Adesão Focal/genética , Camundongos , Camundongos Knockout , Monócitos/citologia , Quimeras de Transplante
6.
Sci Rep ; 6: 27029, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244251

RESUMO

Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase's (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6C(hi) and Ly6C(lo) blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.


Assuntos
Arteriopatias Oclusivas/genética , Quinase 1 de Adesão Focal/genética , Deleção de Genes , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/genética , Remodelação Vascular/genética , Animais , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/patologia , Movimento Celular , Doença Crônica , Modelos Animais de Doenças , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Artéria Femoral/cirurgia , Quinase 1 de Adesão Focal/deficiência , Expressão Gênica , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
7.
Mol Cell Biol ; 33(24): 4766-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100013

RESUMO

The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding domain, but the nuclear import gain of function is mediated by the bipartite nuclear localization signal (NLS) spanning the DNA-binding domain (DBD) and hinge region. Bipartite NLS activity depends on the structure provided by the DBD, and protein interactions with the bipartite NLS are repressed by the hinge region. The bipartite NLS is recognized by importin 7, a nuclear import receptor for several proteins. Importin 7 binding to AR, however, inhibits import by shielding the bipartite NLS. Androgen binding relieves the inhibition by inducing a switch that promotes exchange of importin 7 for karyopherin alpha import receptors. Importin 7 contributes to the regulation of AR import by restraining import until androgen is detected in the cytoplasm.


Assuntos
Substituição de Aminoácidos , Androgênios/fisiologia , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Receptores Androgênicos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Células HeLa , Humanos , Masculino , Metribolona/farmacologia , Modelos Moleculares , Sinais de Localização Nuclear/genética , Neoplasias da Próstata , Ligação Proteica , Receptores Androgênicos/química , Receptores Androgênicos/genética , Reticulócitos/metabolismo , Congêneres da Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA