Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805583

RESUMO

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Ativação Transcricional , Fosforilação , Células HEK293 , Transição Epitelial-Mesenquimal , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animais , Serina-Treonina Quinase 3 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945904

RESUMO

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Assuntos
Neoplasias da Mama , Epigênese Genética , Receptor alfa de Estrogênio , Amplificação de Genes , Proteínas Proto-Oncogênicas c-maf , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética
3.
Front Cell Dev Biol ; 11: 1297355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954209

RESUMO

Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.

4.
Cell Mol Life Sci ; 80(8): 237, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530856

RESUMO

Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.


Assuntos
Lipidômica , Lipídeos , Animais , Lipídeos/análise , Metabolismo dos Lipídeos , Organelas/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Mamíferos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37277192

RESUMO

Extracellular vesicles, such as exosomes, can be used as interesting models to study the structure and function of biological membranes as these vesicles contain only one membrane (i.e., one lipid bilayer). In addition to lipids, they contain proteins, nucleic acids, and various other molecules. The lipid composition of exosomes is here compared to HIV particles and detergent-resistant membranes, which also have a high content of sphingolipids, cholesterol, and phosphatidylserine (PS). We discuss interactions between the lipids in the two bilayers, and especially those between PS 18:0/18:1 in the inner leaflet and the very-long-chain sphingolipids in the outer leaflet, and the importance of cholesterol for these interactions. We also briefly discuss the involvement of ether-linked phospholipids (PLs) in such lipid raft-like structures, and the possible involvement of these and other lipid classes in the formation of exosomes. The urgent need to improve the quality of quantitative lipidomic studies is highlighted.


Assuntos
Vesículas Extracelulares , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Esfingolipídeos/metabolismo , Vesículas Extracelulares/metabolismo , Colesterol
6.
Cell Mol Life Sci ; 80(7): 177, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285022

RESUMO

Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/genética , Exossomos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Corpos Multivesiculares/metabolismo , Autofagia
8.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839759

RESUMO

Altered cellular metabolism is a well-established hallmark of cancer. Although most studies have focused on the metabolism of glucose and glutamine, the upregulation of lipid metabolism is also frequent in cells undergoing oncogenic transformation. In fact, cancer cells need to meet the enhanced demand of plasma membrane synthesis and energy production to support their proliferation. Moreover, lipids are precursors of signaling molecules, termed lipid mediators, which play a role in shaping the tumor microenvironment. Recent methodological advances in lipid analysis have prompted studies aimed at investigating the whole lipid content of a sample (lipidome) to unravel the complexity of lipid changes in cancer patient biofluids. This review focuses on the application of mass spectrometry-based lipidomics for the discovery of cancer biomarkers. Here, we have summarized the main lipid alteration in cancer patients' biofluids and uncovered their potential use for the early detection of the disease and treatment selection. We also discuss the advantages of using biofluid-derived extracellular vesicles as a platform for lipid biomarker discovery. These vesicles have a molecular signature that is a fingerprint of their originating cells. Hence, the analysis of their molecular cargo has emerged as a promising strategy for the identification of sensitive and specific biomarkers compared to the analysis of the unprocessed biofluid.

9.
Front Mol Biosci ; 10: 980433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818049

RESUMO

Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.

11.
Acta Physiol (Oxf) ; 236(4): e13862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377504

RESUMO

Extracellular vesicles induced by exercise have emerged as potential mediators of tissue crosstalk. Extracellular vesicles and their cargo miRNAs have been linked to dysglycemia and obesity in animal models, but their role in humans is unclear. AIM: The aim of the study was to characterize the miRNA content in plasma extracellular vesicle isolates after acute and long-term exercise and to study associations between extracellular vesicle miRNAs, mRNA expression in skeletal muscle and adipose tissue, and cardiometabolic risk factors. METHODS: Sedentary men with or without dysglycemia and overweight underwent an acute bicycle test and a 12-week exercise intervention with extensive metabolic phenotyping. Gene expression in m. vastus lateralis and subcutaneous adipose tissue was measured with RNA sequencing. Extracellular vesicles were purified from plasma with membrane affinity columns or size exclusion chromatography. RESULTS: Extracellular vesicle miRNA profiling revealed a transient increase in the number of miRNAs after acute exercise. We identified miRNAs, such as miR-652-3p, that were associated to insulin sensitivity and adiposity. By performing explorative association analyses, we identified two miRNAs, miR-32-5p and miR-339-3p, that were strongly correlated to an adipose tissue macrophage signature. CONCLUSION: Numerous miRNAs in plasma extracellular vesicle isolates were increased by exercise, and several miRNAs correlated to insulin sensitivity and adiposity. Our findings warrant future studies to characterize exercise-induced extracellular vesicles and cargo miRNA to clarify where exercise-induced extracellular vesicles originate from, and to determine whether they influence metabolic health or exercise adaptation.


Assuntos
Vesículas Extracelulares , Resistência à Insulina , MicroRNAs , Humanos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Sobrepeso , Vesículas Extracelulares/metabolismo , Exercício Físico/fisiologia , Obesidade/genética , Obesidade/metabolismo
12.
Eur J Med Chem ; 243: 114770, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36148710

RESUMO

In the last four decades, treatment of oestrogen receptor positive (ER+) breast cancer (BCa), has focused on targeting the estrogenic receptor signaling pathway. This signaling function is pivotal to sustain cell proliferation. Tamoxifen, a competitive inhibitor of oestrogen, has played a major role in therapeutics. However, primary and acquired resistance to hormone blockade occurs in a large subset of these cancers, and new approaches are urgently needed. Aromatase inhibitors and receptor degraders were approved and alternatively used. Yet, resistance appears in the metastatic setting. Here we report the design and synthesis of a series of proteolysis targeting chimeras (PROTACs) that induce the degradation of estrogen receptor alpha in breast cancer MCF-7 (ER+) cells at nanomolar concentration. Using a warhead based on 4-hydroxytamoxifen, bifunctional degraders recruiting either cereblon or the Von Hippel Lindau E3 ligases were synthesized. Our efforts resulted in the discovery of TVHL-1, a potent ERα degrader (DC50: 4.5 nM) that we envisage as a useful tool for biological study and a platform for potential therapeutics.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Humanos , Feminino , Receptores de Estrogênio/metabolismo , Proteólise , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Quimera/metabolismo , Tamoxifeno/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico
13.
Adv Drug Deliv Rev ; 186: 114326, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588953

RESUMO

There is a large interest in developing nanoparticles and extracellular vesicles for delivery of therapeutics or imaging agents. Regulatory approval of such products requires knowledge about their biodistribution, metabolism and excretion. We here discuss possibilities and challenges of methods used for such studies, which most often are performed after labelling with radioactive isotopes or fluorescent molecules. It is important to evaluate if the labelled and unlabeled products can be expected to behave similarly in the body. Furthermore, one needs to critically consider whether the labels are still associated with the product at the time of analyses. We discuss advantages and disadvantages of different imaging modalities such as PET, SPECT, MRI, CT, ultrasound and optical imaging for whole-body biodistribution, and describe how to estimate the amount of labelled product in harvested organs and tissue. Microscopy of cells and tissues and various mass spectrometry methods are also discussed in this review.


Assuntos
Vesículas Extracelulares , Nanopartículas , Humanos , Nanopartículas/química , Imagem Óptica , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
14.
FASEB J ; 36(4): e22218, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218567

RESUMO

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Assuntos
Líquido Amniótico/citologia , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamação/prevenção & controle , Monócitos/citologia , Células-Tronco/citologia , Adenosina/metabolismo , Líquido Amniótico/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Células-Tronco/metabolismo , Células THP-1
17.
Br J Cancer ; 126(3): 331-350, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811504

RESUMO

Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.


Assuntos
Biomarcadores Tumorais/análise , Ácidos Nucleicos Livres/análise , Detecção Precoce de Câncer/métodos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/diagnóstico , Animais , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Vesículas Extracelulares/genética , Humanos , Masculino , Medicina de Precisão , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
18.
Br J Cancer ; 126(3): 492-501, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811506

RESUMO

BACKGROUND: Active surveillance is an alternative to radical treatment for patients with low-risk prostate cancer, which could also benefit some patients with intermediate risk. We have investigated the use of miRNA in urinary extracellular vesicles to stratify these patients. METHODS: NGS was performed to profile the miRNAs from small urinary extracellular vesicles in a cohort of 70 patients with prostate cancer ISUP Grade 1, 2 or 3. The most promising candidates were then analysed by RT-qPCR in a new cohort of 60 patients. RESULTS: NGS analysis identified nine miRNAs differentially expressed in at least one of the comparisons. The largest differences were found with miR-1290 (Grade 3 vs. 1), miR-320a-3p (Grade 3 vs. 2) and miR-155-5p (Grade 2 vs. 1). Combinations of 2-3 miRNAs were able to differentiate between two ISUP grades with an AUC 0.79-0.88. RT-qPCR analysis showed a similar trend for miR-186-5p and miR-30e-5p to separate Grade 3 from 2, and miR-320a-3p to separate Grade 2 from 1. CONCLUSIONS: Using NGS, we have identified several miRNAs that discriminate between prostate cancer patients with ISUP Grades 1, 2 and 3. Moreover, miR-186-5p, miR-320a-3p and miR-30e-5p showed a similar behaviour in an independent cohort using an alternative analytical method. Our results show that miRNAs from urinary vesicles can be potentially useful as liquid biopsies for active surveillance.


Assuntos
Biomarcadores Tumorais/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/urina , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Conduta Expectante/métodos , Biomarcadores Tumorais/urina , Vesículas Extracelulares/patologia , Humanos , Masculino , MicroRNAs/genética , Gradação de Tumores , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/urina , Curva ROC
19.
PLoS One ; 16(6): e0253828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191854

RESUMO

The ß2-adrenergic receptor has been shown to be involved in neuroendocrine differentiation and to contribute to the development of aggressive prostate cancer. In this study we have investigated whether miR-196a plays a role in the regulation of the ß2-adrenergic receptor in the LNCaP prostate cancer cell line. Our results show that the expression of miR-196a is elevated in LNCaP prostate cancer cells with reduced levels of ß2-adrenergic receptor after stably transfection with three different shRNAs. Furthermore, treatment with ß-blockers showed that this upregulation is strictly related to the low levels of ß2-adrenergic receptor and not to the inhibition of the receptor signaling activity. Finally, we found that the reduced ability of LNCaP cells with low levels of ß2-adrenergic receptor to initiate neuroendocrine differentiation under androgen depletion conditions is mediated by miR-196a. In conclusion, this study provides the rational for a role of miR-196a in the ß2-adrenergic receptor mediated neuroendocrine differentiation of LNCaP prostate cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Crescimento Neuronal/genética , Neoplasias da Próstata/genética , Receptores Adrenérgicos beta 2/genética , Antagonistas de Receptores Adrenérgicos beta 2 , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Masculino , MicroRNAs/genética , Crescimento Neuronal/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores Adrenérgicos beta 2/metabolismo , Regulação para Cima
20.
J Extracell Vesicles ; 10(7): e12093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035881

RESUMO

Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.


Assuntos
Biomarcadores/urina , Vesículas Extracelulares/fisiologia , Sistema Urinário/patologia , Comitês Consultivos , Líquidos Corporais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Rim , Padrões de Referência , Reprodutibilidade dos Testes , Sociedades , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA