Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700218

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Enteropatias , Polissacarídeos/metabolismo
2.
NPJ Biofilms Microbiomes ; 8(1): 20, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396507

RESUMO

The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure-function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.


Assuntos
Adesinas de Escherichia coli , Proteínas de Escherichia coli , Adesinas de Escherichia coli/química , Aderência Bacteriana , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
FEMS Microbes ; 3: xtac005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308105

RESUMO

During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.

4.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622724

RESUMO

Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.IMPORTANCE Understanding the tropism of pathogens for host and tissue requires a complete understanding of the host receptors targeted by fimbrial adhesins. Furthermore, blocking adhesion is a promising strategy to counter increasing antibiotic resistance and is enabled by the identification of host receptors. Here, we use a defined E. coli heterologous expression system to identify glycan receptors for six chaperone-usher fimbriae and identify novel receptors that are consistent with their known function. The same system was used to measure the kinetics of binding to the identified glycan, wherein bacterial cells were immobilized onto a biosensor chip and the interactions with glycans were quantified by surface plasmon resonance. This novel, dual-level analysis, where screening for the repertoire of glycan binding and the hierarchy of affinity of the identified ligands is determined directly from a natively expressed fimbrial structure on the bacterial cell surface, is superior in both throughput and biological relevance.


Assuntos
Aderência Bacteriana , Escherichia coli/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Polissacarídeos/metabolismo , Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Cinética , Ligação Proteica
5.
Nat Chem Biol ; 17(4): 428-437, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542533

RESUMO

Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.


Assuntos
Manose/química , Engenharia de Proteínas/métodos , Triptofano/metabolismo , Sequência de Aminoácidos/genética , Anticorpos/imunologia , Glicosilação , Glicosiltransferases/metabolismo , Manose/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estabilidade Proteica , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triptofano/química
6.
Biochem J ; 478(3): 579-595, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33480416

RESUMO

Surface-associated proteins play critical roles in the Plasmodium parasite life cycle and are major targets for vaccine development. The 6-cysteine (6-cys) protein family is expressed in a stage-specific manner throughout Plasmodium falciparum life cycle and characterized by the presence of 6-cys domains, which are ß-sandwich domains with conserved sets of disulfide bonds. Although several 6-cys family members have been implicated to play a role in sexual stages, mosquito transmission, evasion of the host immune response and host cell invasion, the precise function of many family members is still unknown and structural information is only available for four 6-cys proteins. Here, we present to the best of our knowledge, the first crystal structure of the 6-cys protein Pf12p determined at 2.8 Šresolution. The monomeric molecule folds into two domains, D1 and D2, both of which adopt the canonical 6-cys domain fold. Although the structural fold is similar to that of Pf12, its paralog in P. falciparum, we show that Pf12p does not complex with Pf41, which is a known interaction partner of Pf12. We generated 10 distinct Pf12p-specific nanobodies which map into two separate epitope groups; one group which binds within the D2 domain, while several members of the second group bind at the interface of the D1 and D2 domain of Pf12p. Characterization of the structural features of the 6-cys family and their associated nanobodies provide a framework for generating new tools to study the diverse functions of the 6-cys protein family in the Plasmodium life cycle.


Assuntos
Antígenos de Protozoários/química , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Sítios de Ligação , Western Blotting , Camelídeos Americanos/imunologia , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Interferometria , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasmodium falciparum/metabolismo , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/isolamento & purificação
7.
Nat Microbiol ; 5(11): 1340-1348, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807890

RESUMO

The IncC family of broad-host-range plasmids enables the spread of antibiotic resistance genes among human enteric pathogens1-3. Although aspects of IncC plasmid conjugation have been well studied4-9, many roles of conjugation genes have been assigned based solely on sequence similarity. We applied hypersaturated transposon mutagenesis and transposon-directed insertion-site sequencing to determine the set of genes required for IncC conjugation. We identified 27 conjugation genes, comprising 19 that were previously identified (including two regulatory genes, acaDC) and eight not previously associated with conjugation. We show that one previously unknown gene, acaB, encodes a transcriptional regulator that has a crucial role in the regulation of IncC conjugation. AcaB binds upstream of the acaDC promoter to increase acaDC transcription; in turn, AcaDC activates the transcription of IncC conjugation genes. We solved the crystal structure of AcaB at 2.9-Å resolution and used this to guide functional analyses that reveal how AcaB binds to DNA. This improved understanding of IncC conjugation provides a basis for the development of new approaches to reduce the spread of these multi-drug-resistance plasmids.


Assuntos
Conjugação Genética/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutagênese , Mutação , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Transativadores/química , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
8.
Nat Commun ; 10(1): 1967, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036849

RESUMO

Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core ß-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter ß-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glicosaminoglicanos/metabolismo , Escherichia coli Uropatogênica/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Virulência/química , Fatores de Virulência/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(13): 6341-6350, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846555

RESUMO

Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.


Assuntos
Imunidade Inata/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/imunologia , Escherichia coli Uropatogênica/metabolismo , Zinco/toxicidade , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fatores de Transcrição/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética
10.
Nat Commun ; 10(1): 976, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824772

RESUMO

This Article contains errors in Fig. 1, Table 1 and the Methods section. In panel c, the labels for PmScsC and EcDsbC in the upper two curves are interchanged. In Table 1 and the Methods section entitled 'Extended structure', the space group of the extended PmScsC structure is incorrectly referred to as H32 and should read H32. Correct versions of Fig. 1 and Table 1 are presented below; the errors have not been corrected in the Article.

11.
FASEB J ; 33(6): 7437-7450, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30869997

RESUMO

Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections (UTIs). The multidrug-resistant E. coli sequence type 131 (ST131) clone is a serious threat to human health, yet its effects on immune responses are not well understood. Here we screened a panel of ST131 isolates, finding that only strains expressing the toxin hemolysin A (HlyA) killed primary human macrophages and triggered maturation of the inflammasome-dependent cytokine IL-1ß. Using a representative strain, the requirement for the hlyA gene in these responses was confirmed. We also observed considerable heterogeneity in levels of cell death initiated by different HlyA+ve ST131 isolates, and this correlated with secreted HlyA levels. Investigation into the biological significance of this variation revealed that an ST131 strain producing low levels of HlyA initiated cell death that was partly dependent on the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with this response being associated with a host-protective role in a mouse UTI model. When the same ST131 strain was engineered to overexpress high HlyA levels, macrophage cell death occurred even when NLRP3 function was abrogated, and bladder colonization was significantly increased. Thus, variation in HlyA expression in UPEC affects mechanisms by which macrophages die, as well as host susceptibility vs. resistance to colonization.-Murthy, A. M. V., Sullivan, M. J., Nhu, N. T. K., Lo, A. W., Phan, M.-D., Peters, K. M., Boucher, D., Schroder, K., Beatson, S. A., Ulett, G. C., Schembri, M. A., Sweet, M. J. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization.


Assuntos
Morte Celular , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escherichia coli Uropatogênica/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Humanos , Camundongos , Infecções Urinárias/microbiologia
12.
mBio ; 9(4)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131362

RESUMO

Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.


Assuntos
Amiloide/genética , Proteínas de Escherichia coli/genética , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Pielonefrite/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Virulência , Catelicidinas
13.
Nat Commun ; 9(1): 1395, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643377

RESUMO

Bacterial autotransporters comprise a C-terminal ß-barrel domain, which must be correctly folded and inserted into the outer membrane to facilitate translocation of the N-terminal passenger domain to the cell exterior. Once at the surface, the passenger domains of most autotransporters are folded into an elongated ß-helix. In a cellular context, key molecules catalyze the assembly of the autotransporter ß-barrel domain. However, how the passenger domain folds into its functional form is poorly understood. Here we use mutational analysis on the autotransporter Pet to show that the ß-hairpin structure of the fifth extracellular loop of the ß-barrel domain has a crucial role for passenger domain folding into a ß-helix. Bioinformatics and structural analyses, and mutagenesis of a homologous autotransporter, suggest that this function is conserved among autotransporter proteins with ß-helical passenger domains. We propose that the autotransporter ß-barrel domain is a folding vector that nucleates folding of the passenger domain.


Assuntos
Toxinas Bacterianas/química , Enterotoxinas/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas Recombinantes/química , Serina Endopeptidases/química , Sistemas de Secreção Tipo V/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enterotoxinas/genética , Enterotoxinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Termodinâmica , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29133551

RESUMO

Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce ß-lactamases with carbapenemase activity, such as the metallo-ß-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse ß-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other ß-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 µM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Íons/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Carbapenêmicos/farmacologia , Ertapenem/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana/métodos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
15.
Nat Commun ; 8: 16065, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722010

RESUMO

Copper resistance is a key virulence trait of the uropathogen Proteus mirabilis. Here we show that P. mirabilis ScsC (PmScsC) contributes to this defence mechanism by enabling swarming in the presence of copper. We also demonstrate that PmScsC is a thioredoxin-like disulfide isomerase but, unlike other characterized proteins in this family, it is trimeric. PmScsC trimerization and its active site cysteine are required for wild-type swarming activity in the presence of copper. Moreover, PmScsC exhibits unprecedented motion as a consequence of a shape-shifting motif linking the catalytic and trimerization domains. The linker accesses strand, loop and helical conformations enabling the sampling of an enormous folding landscape by the catalytic domains. Mutation of the shape-shifting motif abolishes disulfide isomerase activity, as does removal of the trimerization domain, showing that both features are essential to foldase function. More broadly, the shape-shifter peptide has the potential for 'plug and play' application in protein engineering.


Assuntos
Cobre , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteus mirabilis/enzimologia , Estrutura Quaternária de Proteína , Proteus mirabilis/patogenicidade
16.
Trends Microbiol ; 25(9): 729-740, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28550944

RESUMO

Uropathogenic Escherichia coli (UPEC) is a pathogen of major significance to global human health and is strongly associated with rapidly increasing antibiotic resistance. UPEC is the primary cause of urinary tract infection (UTI), a disease that involves a complicated pathogenic pathway of extracellular and intracellular lifestyles during interaction with the host. The application of multiple 'omic' technologies, including genomics, transcriptomics, proteomics, and metabolomics, has provided enormous knowledge to our understanding of UPEC biology. Here we outline this progress and present a view for future developments using these exciting forefront technologies to fully comprehend UPEC pathogenesis in the context of infection.


Assuntos
Genômica , Metabolômica , Proteômica , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas , Transcriptoma , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/metabolismo , Virulência
17.
PLoS One ; 12(5): e0176290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489862

RESUMO

Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced UPEC motility.


Assuntos
Escherichia coli/genética , Genes Bacterianos , Elementos de DNA Transponíveis , Escherichia coli/fisiologia , Mutação , Biossíntese de Proteínas , Transcrição Gênica
18.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904885

RESUMO

Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains-an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCEE. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli.

19.
Nat Microbiol ; 1(7): 16064, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27572967

RESUMO

Outer membrane proteins are essential for Gram-negative bacteria to rapidly adapt to changes in their environment. Intricate remodelling of the outer membrane proteome is critical for bacterial pathogens to survive environmental changes, such as entry into host tissues(1-3). Fimbriae (also known as pili) are appendages that extend up to 2 µm beyond the cell surface to function in adhesion for bacterial pathogens, and are critical for virulence. The best-studied examples of fimbriae are the type 1 and P fimbriae of uropathogenic Escherichia coli, the major causative agent of urinary tract infections in humans. Fimbriae share a common mode of biogenesis, orchestrated by a molecular assembly platform called 'the usher' located in the outer membrane. Although the mechanism of pilus biogenesis is well characterized, how the usher itself is assembled at the outer membrane is unclear. Here, we report that a rapid response in usher assembly is crucially dependent on the translocation assembly module. We assayed the assembly reaction for a range of ushers and provide mechanistic insight into the ß-barrel assembly pathway that enables the rapid deployment of bacterial fimbriae.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/farmacocinética , Fímbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/ultraestrutura , Humanos , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia
20.
Mol Microbiol ; 101(6): 1069-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27309594

RESUMO

Uropathogenic Escherichia coli (UPEC) of sequence type 131 (ST131) are a pandemic multidrug resistant clone associated with urinary tract and bloodstream infections. Type 1 fimbriae, a major UPEC virulence factor, are essential for ST131 bladder colonization. The globally dominant sub-lineage of ST131 strains, clade C/H30-R, possess an ISEc55 insertion in the fimB gene that controls phase-variable type 1 fimbriae expression via the invertible fimS promoter. We report that inactivation of fimB in these strains causes altered regulation of type 1 fimbriae expression. Using a novel read-mapping approach based on Illumina sequencing, we demonstrate that 'off' to 'on' fimS inversion is reduced in these strains and controlled by recombinases encoded by the fimE and fimX genes. Unlike typical UPEC strains, the nucleoid-associated H-NS protein does not strongly repress fimE transcription in clade C ST131 strains. Using a genetic screen to identify novel regulators of fimE and fimX in the clade C ST131 strain EC958, we defined a new role for the guaB gene in the regulation of type 1 fimbriae and in colonisation of the mouse bladder. Our results provide a comprehensive analysis of type 1 fimbriae regulation in ST131, and highlight important differences in its control compared to non-ST131 UPEC.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Integrases/genética , Integrases/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Virulência/metabolismo , Animais , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Escherichia coli Uropatogênica/metabolismo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA