Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(30): 26948-26954, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546610

RESUMO

Hydrogenation-induced modification of magnetic properties has been widely studied. A Mg spacer layer with high hydrogen storage stability was clamped in a Pd/Co/Mg/Fe multilayer structure to enhance its hydrogen storage stability and explore the structure's magneto-transport properties. After 1 bar hydrogen exposure, the formation of a stable MgH2 phase was demonstrated in an ambient environment at room temperature through X-ray diffraction. Lower magnetic coupling and enhanced magnetoresistance, compared to those of the as-grown sample, were observed using the longitudinal magneto-optical Kerr effect and a four-probe measurement. In this study, the hydrogenation stability of ferromagnetic multilayers was improved, and the concept of a hydrogenation-based spintronic device was developed.

2.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258140

RESUMO

Blood testing is a crucial application in the field of clinical studies for disease diagnosis and screening, biomarker discovery, organ function assessment, and the personalization of medication. Therefore, it is of the utmost importance to collect precise data in a short time. In this study, we utilized Raman spectroscopy to analyze blood samples for the extraction of comprehensive biological information, including the primary components and compositions present in the blood. Short-wavelength (532 nm green light) Raman scattering spectroscopy was applied for the analysis of the blood samples, plasma, and serum for detection of the biological characteristics in each sample type. Our results indicated that the whole blood had a high hemoglobin content, which suggests that hemoglobin is a major component of blood. The characteristic Raman peaks of hemoglobin were observed at 690, 989, 1015, 1182, 1233, 1315, and 1562-1649 cm-1. Analysis of the plasma and serum samples indicated the presence of ß-carotene, which exhibited characteristic peaks at 1013, 1172, and 1526 cm-1. This novel 3D silicon micro-channel device technology holds immense potential in the field of medical blood testing. It can serve as the basis for the detection of various diseases and biomarkers, providing real-time data to help medical professionals and patients better understand their health conditions. Changes in biological data collected in this manner could potentially be used for clinical diagnosis.

3.
Langmuir ; 33(34): 8362-8371, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28812363

RESUMO

Oxygen vacancy is the most studied point defect and has been found to significantly influence the physical properties of zinc oxide (ZnO). By using atomic force microscopy (AFM), we show that the frictional properties on the ZnO surface at the nanoscale greatly depend on the amount of oxygen vacancies present in the surface layer and the ambient humidity. The photocatalytic effect (PCE) is used to qualitatively control the amount of oxygen vacancies in the surface layer of ZnO and reversibly switch the surface wettability between hydrophobic and superhydrophilic states. Because oxygen vacancies in the ZnO surface can attract ambient water molecules, during the AFM friction measurement, water meniscus can form between the asperities at the AFM tip-ZnO contact due to the capillary condensation, leading to negative dependence of friction on the logarithm of tip sliding velocity. Such dependence is found to be a strong function of relative humidity and can be reversibly manipulated by the PCE. Our results indicate that it is possible to control the frictional properties of ZnO surface at the nanoscale using optical approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA