Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Genomics ; 23(1): 257, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379185

RESUMO

BACKGROUND: Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. RESULTS: Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. CONCLUSIONS: We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology.


Assuntos
MicroRNAs , Animais , Abelhas/genética , Epigênese Genética , MicroRNAs/genética , Reprodução/genética
2.
Sci Rep ; 10(1): 13741, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792518

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that are considered to be on the same disease spectrum because of overlapping genetic, pathological and clinical traits. Changes in serum proteins in FTD and ALS are poorly understood, and currently no definitive biomarkers exist for diagnosing or monitoring disease progression for either disease. Here we applied quantitative discovery proteomics to analyze protein changes in FTD (N = 72) and ALS (N = 28) patient serum compared to controls (N = 22). Twenty three proteins were significantly altered in FTD compared to controls (increased-APOL1, C3, CTSH, EIF5A, MYH2, S100A8, SUSD5, WDR1; decreased-C1S, C7, CILP2, COMP, CRTAC1, EFEMP1, FBLN1, GSN, HSPG2, IGHV1, ITIH2, PROS1, SHBG, UMOD, VASN) and 14 proteins were significantly altered in ALS compared to controls (increased-APOL1, CKM, CTSH, IGHG1, IGKC, MYH2; decreased-C7, COMP, CRTAC1, EFEMP1, FBLN1, GSN, HSPG2, SHBG). There was substantial overlap in the proteins that were altered in FTD and ALS. These results were validated using western blotting. Gene ontology tools were used to assess functional pathways potentially dysregulated in the two diseases, and calcium ion binding and innate immunity pathways were altered in both diseases. When put together, these results suggest significant overlap in pathophysiological peripheral changes in FTD and ALS. This study represents the first proteomics side-by-side comparison of serum changes in FTD and ALS, providing new insights into under-recognized perturbed pathways and an avenue for biomarker development for FTD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Sanguíneas/metabolismo , Demência Frontotemporal/sangue , Demência Frontotemporal/metabolismo , Imunidade Inata/imunologia , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas , Proteoma/metabolismo , Proteômica/métodos
3.
Genome ; 63(11): 525-534, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32762630

RESUMO

Sequence-based markers have added a new dimension in the efficiency of identifying alien introgressions in wheat. Expressed sequence tag-sequence tagged sites (EST-STS) markers have proved useful in tracing alien chromatin. In this study, we report the development of Thinopyrum bessarabicum- and Secale anatolicum-specific EST-STS markers and their application in tracing respective alien chromatin introgressions in wheat. The parental lines, Chinese Spring (CS), ISR991.1 (CS/Th. bessarabicum amphidiploid), and ISR1049.2 (CS/Secale anatolicum amphidiploid), were used as core experimental materials. Using comparative analysis of RNA-Seq data, 10 903 and 10 660 candidate sequences specific to Th. bessarabicum and S. anatolicum, respectively, were assembled and identified. To validate the genome specificity of these candidate sequences, 68 and 64 EST-STS markers were developed from randomly selected candidate sequences of Th. bessarabicum and S. anatolicum, respectively, and tested on sets of alien addition lines. Fifty-five and 53 markers for Th. bessarabicum and S. anatolicum chromatin, respectively, were assigned to chromosomal location(s), covering all seven chromosomes. Approximately 83% of S. anatolicum-specific markers were transferable to S. cereale. The genome-specific candidate sequences identified and the EST-STS markers developed will be valuable resources for exploitation of Th. bessarabicum and Secale species diversity in wheat and triticale breeding.


Assuntos
RNA-Seq , Secale/genética , Triticum/genética , Cromossomos de Plantas , Etiquetas de Sequências Expressas , Hibridização in Situ Fluorescente
4.
J Dermatol Sci ; 99(2): 119-127, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32651104

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is a common malignancy worldwide and the first as the cause of death from keratinocytic carcinomas. Around 5% of primary cSCCs metastasize, leading to a 5-year survival rate of only 11 %. OBJECTIVE: This paper aims to investigate the proteome profile of primary and metastatic cSCC lesions for the identification of potential diagnostic biomarkers and molecular alterations. METHODS: Liquid chromatography coupled with SWATH-MS workflow was used to analyse the proteome profile of formalin-fixed and paraffin-embedded samples of primary (n = 20) and metastatic cSCC (n = 25) lesions. Statistical and bioinformatics analysis was performed to identify differentially abundant proteins and molecular alterations between the lesions. RESULTS: A total of 5037 proteins were identified across the samples of which 19 proteins including ISG15, APOA1 and MARCKS with roles in metastasis were increased and 11 proteins including DMKN, APCS and CST6 decreased in metastatic cSCC lesions relative to the primary phenotypes (adj. p-value <0.05). The proteomic data separated the lesions based on their histopathological diagnosis. Bioinformatics analysis revealed that cell migration, cell survival and immune response are likely activated, and apoptosis is inhibited in metastatic cSCC lesions, indicating increased lesion complexity as the disease progresses from primary to the metastatic phenotype. Two samples were reclassified after PCA analysis. CONCLUSION: SWATH-MS analysis identified important molecular changes between primary and metastatic cSCC samples. Exploring these findings further will allow their translation into the clinic for improved tumour diagnosis, staging and therapeutic intervention.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Cutâneas/diagnóstico , Pele/patologia , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/secundário , Movimento Celular/genética , Sobrevivência Celular/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Estadiamento de Neoplasias , Proteômica , Pele/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
5.
Genome Biol ; 21(1): 167, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641141

RESUMO

High-throughput single-cell RNA-seq (scRNA-seq) is a powerful tool for studying gene expression in single cells. Most current scRNA-seq bioinformatics tools focus on analysing overall expression levels, largely ignoring alternative mRNA isoform expression. We present a computational pipeline, Sierra, that readily detects differential transcript usage from data generated by commonly used polyA-captured scRNA-seq technology. We validate Sierra by comparing cardiac scRNA-seq cell types to bulk RNA-seq of matched populations, finding significant overlap in differential transcripts. Sierra detects differential transcript usage across human peripheral blood mononuclear cells and the Tabula Muris, and 3 'UTR shortening in cardiac fibroblasts. Sierra is available at https://github.com/VCCRI/Sierra .


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica , Análise de Sequência de RNA , Análise de Célula Única , Software , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Miocárdio/metabolismo , Poli A
6.
Mol Ecol ; 29(8): 1523-1533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220095

RESUMO

The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating. We generated reciprocal crosses between Capensis and another subspecies and used RNA-seq to identify transcripts that are over- or underexpressed in the embryos, depending on the parental origin of the gene. As predicted, 21 genes showed expression bias towards the Capensis father's allele in colonies with a Capensis father, with no such bias in the reciprocal cross. A further six genes showed a consistent bias towards expression of the father's allele across all eight colonies examined, regardless of the direction of the cross. Consistent with predictions of the KTGI, six of the 21 genes are associated with female reproduction. No gene consistently showed overexpression of the maternal allele.


Assuntos
Impressão Genômica , Reprodução , Alelos , Animais , Abelhas/genética , Feminino , Expressão Gênica , Masculino , Fenótipo
7.
Psychol Rep ; 123(6): 2617-2636, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31399007

RESUMO

The current study examined the factor structure and psychometric properties of the Chinese version of the Revised Life Orientation Test (CLOT-R) in a sample of 342 community-dwelling older Chinese immigrants in Canada (mean age = 71.99, SD = 5.62; 58.5% female). Confirmatory factor analysis demonstrated that the CLOT-R yields a two-factor model with one item cross-loading on two latent constructs of optimism and pessimism. Analysis further revealed poor internal consistency and convergent validity. Evidence for discriminant and convergent validity was found between optimism and perceived stress, as well as optimism and quality of life. Compared with the factor structure reported in previous Chinese-speaking samples, the modified two-factor structure found in the current group of older Chinese immigrants could be attributed to the heterogeneity of the sample and possible configural variance across culture and age. Overall, the current findings suggest that the CLOT-R may not be a reliable and valid measure to assess dispositional optimism and pessimism among older Chinese immigrants. Theoretical implications and suggestions for further scale development and research is discussed.


Assuntos
Emigrantes e Imigrantes/psicologia , Idioma , Psicometria , Traduções , Idoso , Povo Asiático/psicologia , Canadá , China/etnologia , Análise Fatorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Otimismo , Pessimismo , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários
8.
BMC Genomics ; 20(Suppl 9): 913, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874628

RESUMO

BACKGROUND: Single-cell RNA-sequencing (scRNA-seq) is a fast emerging technology allowing global transcriptome profiling on the single cell level. Cell type identification from scRNA-seq data is a critical task in a variety of research such as developmental biology, cell reprogramming, and cancers. Typically, cell type identification relies on human inspection using a combination of prior biological knowledge (e.g. marker genes and morphology) and computational techniques (e.g. PCA and clustering). Due to the incompleteness of our current knowledge and the subjectivity involved in this process, a small amount of cells may be subject to mislabelling. RESULTS: Here, we propose a semi-supervised learning framework, named scReClassify, for 'post hoc' cell type identification from scRNA-seq datasets. Starting from an initial cell type annotation with potentially mislabelled cells, scReClassify first performs dimension reduction using PCA and next applies a semi-supervised learning method to learn and subsequently reclassify cells that are likely mislabelled initially to the most probable cell types. By using both simulated and real-world experimental datasets that profiled various tissues and biological systems, we demonstrate that scReClassify is able to accurately identify and reclassify misclassified cells to their correct cell types. CONCLUSIONS: scReClassify can be used for scRNA-seq data as a post hoc cell type classification tool to fine-tune cell type annotations generated by any cell type classification procedure. It is implemented as an R package and is freely available from https://github.com/SydneyBioX/scReClassify.


Assuntos
RNA-Seq/métodos , Animais , Humanos , Aprendizado de Máquina , Camundongos , Análise de Célula Única/métodos , Software
9.
BMC Bioinformatics ; 20(Suppl 19): 721, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870280

RESUMO

BACKGROUND: Differences in cell-type composition across subjects and conditions often carry biological significance. Recent advancements in single cell sequencing technologies enable cell-types to be identified at the single cell level, and as a result, cell-type composition of tissues can now be studied in exquisite detail. However, a number of challenges remain with cell-type composition analysis - none of the existing methods can identify cell-type perfectly and variability related to cell sampling exists in any single cell experiment. This necessitates the development of method for estimating uncertainty in cell-type composition. RESULTS: We developed a novel single cell differential composition (scDC) analysis method that performs differential cell-type composition analysis via bootstrap resampling. scDC captures the uncertainty associated with cell-type proportions of each subject via bias-corrected and accelerated bootstrap confidence intervals. We assessed the performance of our method using a number of simulated datasets and synthetic datasets curated from publicly available single cell datasets. In simulated datasets, scDC correctly recovered the true cell-type proportions. In synthetic datasets, the cell-type compositions returned by scDC were highly concordant with reference cell-type compositions from the original data. Since the majority of datasets tested in this study have only 2 to 5 subjects per condition, the addition of confidence intervals enabled better comparisons of compositional differences between subjects and across conditions. CONCLUSIONS: scDC is a novel statistical method for performing differential cell-type composition analysis for scRNA-seq data. It uses bootstrap resampling to estimate the standard errors associated with cell-type proportion estimates and performs significance testing through GLM and GLMM models. We have made this method available to the scientific community as part of the scdney package (Single Cell Data Integrative Analysis) R package, available from https://github.com/SydneyBioX/scdney.


Assuntos
Análise de Célula Única/métodos , Humanos
10.
Brain ; 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31216018

RESUMO

The mismatch repair gene MSH3 has been implicated as a genetic modifier of the CAG·CTG repeat expansion disorders Huntington's disease and myotonic dystrophy type 1. A recent Huntington's disease genome-wide association study found rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR, as the variant most significantly associated with progression in Huntington's disease. Using Illumina sequencing in Huntington's disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG·CTG expansion (P = 0.004) and delayed disease onset (P = 0.003) in both Huntington's disease and myotonic dystrophy type 1, and slower progression (P = 3.86 × 10-7) in Huntington's disease. RNA-Seq of whole blood in the Huntington's disease subjects found that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the Huntington's disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington's disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion diseases.

11.
Proc Natl Acad Sci U S A ; 116(20): 9775-9784, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028141

RESUMO

Concerted examination of multiple collections of single-cell RNA sequencing (RNA-seq) data promises further biological insights that cannot be uncovered with individual datasets. Here we present scMerge, an algorithm that integrates multiple single-cell RNA-seq datasets using factor analysis of stably expressed genes and pseudoreplicates across datasets. Using a large collection of public datasets, we benchmark scMerge against published methods and demonstrate that it consistently provides improved cell type separation by removing unwanted factors; scMerge can also enhance biological discovery through robust data integration, which we show through the inference of development trajectory in a liver dataset collection.


Assuntos
Metanálise como Assunto , Análise de Sequência de RNA , Análise de Célula Única , Software , Algoritmos , Animais , Desenvolvimento Embrionário , Análise Fatorial , Expressão Gênica , Humanos , Camundongos
12.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764981

RESUMO

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Éxons/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Splicing de RNA/genética
13.
Cell Rep ; 22(13): 3401-3408, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590610

RESUMO

Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets. We performed RNA sequencing of hypothalamus from individuals with Prader-Willi syndrome (PWS), a genetic obesity syndrome characterized by severe hyperphagia. We found that upregulated genes overlap with the transcriptome of mouse Agrp neurons that signal hunger, while downregulated genes overlap with the expression profile of Pomc neurons activated by feeding. Downregulated genes are expressed mainly in neuronal cells and contribute to neurogenesis, neurotransmitter release, and synaptic plasticity, while upregulated, predominantly microglial genes are involved in inflammatory responses. This transcriptional signature may be mediated by reduced brain-derived neurotrophic factor expression. Additionally, we implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS. Transcriptomic analysis of the human hypothalamus may identify neural mechanisms involved in energy homeostasis and potential therapeutic targets for weight loss.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Jejum/fisiologia , Hipotálamo/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Camundongos , Obesidade/metabolismo , Síndrome de Prader-Willi/patologia , Transcriptoma
14.
Brain ; 140(11): 2797-2805, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053787

RESUMO

Mutations in FUS are causative for amyotrophic lateral sclerosis with a dominant mode of inheritance. In trying to model FUS-amyotrophic lateral sclerosis (ALS) in mouse it is clear that FUS is dosage-sensitive and effects arise from overexpression per se in transgenic strains. Novel models are required that maintain physiological levels of FUS expression and that recapitulate the human disease-with progressive loss of motor neurons in heterozygous animals. Here, we describe a new humanized FUS-ALS mouse with a frameshift mutation, which fulfils both criteria: the FUS Delta14 mouse. Heterozygous animals express mutant humanized FUS protein at physiological levels and have adult onset progressive motor neuron loss and denervation of neuromuscular junctions. Additionally, we generated a novel antibody to the unique human frameshift peptide epitope, allowing specific identification of mutant FUS only. Using our new FUSDelta14 ALS mouse-antibody system we show that neurodegeneration occurs in the absence of FUS protein aggregation. FUS mislocalization increases as disease progresses, and mutant FUS accumulates at the rough endoplasmic reticulum. Further, transcriptomic analyses show progressive changes in ribosomal protein levels and mitochondrial function as early disease stages are initiated. Thus, our new physiological mouse model has provided novel insight into the early pathogenesis of FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Mutação da Fase de Leitura , Camundongos , Agregação Patológica de Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Retículo Endoplasmático Rugoso/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Heterozigoto , Humanos , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética
15.
Lancet Neurol ; 16(9): 701-711, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28642124

RESUMO

BACKGROUND: Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. METHODS: We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008-11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003-13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. FINDINGS: Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10-10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10-8DHFR p=8·37 × 10-7 MTRNR2L2 p=2·15 × 10-9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10-4DHFR p=8·45 × 10-4MTRNR2L2 p=1·20 × 10-3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10-8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16-0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06-0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. INTERPRETATION: The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. FUNDING: The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain.


Assuntos
Proteínas de Ligação a DNA/genética , Progressão da Doença , Estudo de Associação Genômica Ampla/métodos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Sistema de Registros , Índice de Gravidade de Doença , Adulto , Humanos , Estudos Longitudinais , Proteína 3 Homóloga a MutS , Análise de Componente Principal
16.
Sci Rep ; 7: 44849, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322270

RESUMO

There is widespread transcriptional dysregulation in Huntington's disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer's disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches.


Assuntos
Doença de Alzheimer/etiologia , Encéfalo/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/etiologia , Imunidade/genética , Transcriptoma , Adulto , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Adulto Jovem
17.
Adv Exp Med Biol ; 924: 71-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753022

RESUMO

Our UK National Health Service regional genetics laboratory offers NIPD for autosomal dominant and de novo conditions (achondroplasia, thanataphoric dysplasia, Apert syndrome), paternal mutation exclusion for cystic fibrosis and a range of bespoke tests. NIPD avoids the risks associated with invasive testing, making prenatal diagnosis more accessible to families at high genetic risk. However, the challenge remains in offering definitive diagnosis for autosomal recessive diseases, which is complicated by the predominance of the maternal mutant allele in the cell-free DNA sample and thus requires a variety of different approaches. Validation and diagnostic implementation for NIPD of congenital adrenal hyperplasia (CAH) is further complicated by presence of a pseudogene that requires a different approach. We have used an assay targeting approximately 6700 heterozygous SNPs around the CAH gene (CYP21A2) to construct the high-risk parental haplotypes and tested this approach in five cases, showing that inheritance of the parental alleles can be correctly identified using NIPD. We are evaluating various measures of the fetal fraction to help determine inheritance of parental mutations. We are currently exploring the utility of an NIPD multi-disorder panel for autosomal recessive disease, to make testing more widely applicable to families with a variety of serious genetic conditions.


Assuntos
Doenças Genéticas Inatas/genética , Ciência de Laboratório Médico/métodos , Diagnóstico Pré-Natal/métodos , Medicina Estatal , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , DNA/sangue , DNA/genética , Feminino , Genes Dominantes , Genes Recessivos , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/diagnóstico , Haplótipos , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Esteroide 21-Hidroxilase/genética , Reino Unido
18.
Hum Mol Genet ; 25(14): 2893-2904, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170315

RESUMO

Innate immune activation beyond the central nervous system is emerging as a vital component of the pathogenesis of neurodegeneration. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The systemic innate immune system is thought to act as a modifier of disease progression; however, the molecular mechanisms remain only partially understood. Here we use RNA-sequencing to perform whole transcriptome analysis of primary monocytes from thirty manifest HD patients and thirty-three control subjects, cultured with and without a proinflammatory stimulus. In contrast with previous studies that have required stimulation to elicit phenotypic abnormalities, we demonstrate significant transcriptional differences in HD monocytes in their basal, unstimulated state. This includes previously undetected increased resting expression of genes encoding numerous proinflammatory cytokines, such as IL6 Further pathway analysis revealed widespread resting enrichment of proinflammatory functional gene sets, while upstream regulator analysis coupled with Western blotting suggests that abnormal basal activation of the NFĸB pathway plays a key role in mediating these transcriptional changes. That HD myeloid cells have a proinflammatory phenotype in the absence of stimulation is consistent with a priming effect of mutant huntingtin, whereby basal dysfunction leads to an exaggerated inflammatory response once a stimulus is encountered. These data advance our understanding of mutant huntingtin pathogenesis, establish resting myeloid cells as a key source of HD immune dysfunction, and further demonstrate the importance of systemic immunity in the potential treatment of HD and the wider study of neurodegeneration.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Imunidade Inata/genética , Inflamação/genética , Ativação Transcricional/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína Huntingtina/biossíntese , Doença de Huntington/patologia , Inflamação/patologia , Interleucina-6/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Expansão das Repetições de Trinucleotídeos/genética
19.
Am J Hum Genet ; 98(1): 34-44, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26708752

RESUMO

The use of massively parallel sequencing of maternal cfDNA for non-invasive prenatal testing (NIPT) of aneuploidy is widely available. Recently, the scope of testing has increased to include selected subchromosomal abnormalities, but the number of samples reported has been small. We developed a calling pipeline based on a segmentation algorithm for the detection of these rearrangements in maternal plasma. The same read depth used in our standard pipeline for aneuploidy NIPT detected 15/18 (83%) samples with pathogenic rearrangements > 6 Mb but only 2/10 samples with rearrangements < 6 Mb, unless they were maternally inherited. There were two false-positive calls in 534 samples with no known subchromosomal abnormalities (specificity 99.6%). Using higher read depths, we detected 29/31 fetal subchromosomal abnormalities, including the three samples with maternally inherited microduplications. We conclude that test sensitivity is a function of the fetal fraction, read depth, and size of the fetal CNV and that at least one of the two false negatives is due to a low fetal fraction. The lack of an independent method for determining fetal fraction, especially for female fetuses, leads to uncertainty in test sensitivity, which currently has implications for this technique's future as a clinical diagnostic test. Furthermore, to be effective, NIPT must be able to detect chromosomal rearrangements across the whole genome for a very low false-positive rate. Because standard NIPT can only detect the majority of larger (>6 Mb) chromosomal rearrangements and requires knowledge of fetal fraction, we consider that it is not yet ready for routine clinical implementation.


Assuntos
Aberrações Cromossômicas , Testes Genéticos/métodos , Diagnóstico Pré-Natal/normas , Aneuploidia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
20.
Nat Genet ; 47(5): 523-527, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774636

RESUMO

Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10(-11) for rs4733781; P = 1.0 × 10(-10) for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis-infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células Dendríticas/fisiologia , Tuberculose Pulmonar/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA