Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2721-2730, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048668

RESUMO

Neurostimulation therapies for psychiatric disorders often have limited clinical efficacy. The limited efficacy might arise from a mismatch between therapy and disease mechanisms. Mental disorders are believed to arise from communication breakdown in distributed brain circuits, and thus altering connectivity between brain regions might be an effective way to restore normal brain communication. Synchronized neural oscillations (coherence) and synaptic strength are two common measures of brain connectivity. In this work, we developed an electrical stimulation method for altering narrow-frequency-band (theta, 5-8 Hz) coherence and synaptic strength. We tested this method in a circuit between infralimbic cortex (IL) and basolateral amygdala (BLA), which is broadly implicated in fear regulation. 6 Hz pulse trains were delivered into IL and BLA with various inter-train lags. These paired trains induced long-lasting synaptic strength change and a brief coherence enhancement in the IL-BLA circuit. This enhancement was specific to the "top-down" (IL-to-BLA) direction, and only occurred when the IL and BLA pulse trains had a relative lag of 180° (83 ms). Since the IL-BLA connection is known to be highly relevant to fear regulation, this method provides a tool to study the relationship between brain connectivity and fear behaviors. Further, it may be a new approach to study the relative roles of synaptic strength and oscillatory synchrony in brain network communication.


Assuntos
Encéfalo , Medo , Córtex Cerebral , Humanos , Vias Neurais
2.
Elife ; 82019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31617848

RESUMO

Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated with brain function and dysfunction. Many different types of CFC have been identified through application of numerous data analysis methods, each developed to characterize a specific CFC type. Choosing an inappropriate method weakens statistical power and introduces opportunities for confounding effects. To address this, we propose a statistical modeling framework to estimate high frequency amplitude as a function of both the low frequency amplitude and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency amplitude. We show in simulations that the proposed method successfully detects CFC between the low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing method in biologically-motivated examples. Applying the method to in vivo data, we illustrate examples of CFC during a seizure and in response to electrical stimuli.


Assuntos
Bioestatística/métodos , Ondas Encefálicas , Encéfalo/fisiologia , Animais , Simulação por Computador , Eletroencefalografia , Humanos , Modelos Neurológicos
3.
J Neural Eng ; 16(2): 026022, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620935

RESUMO

OBJECTIVE: Neurostimulation technologies are important for studying neural circuits and the connections that underlie neurological and psychiatric disorders. However, current methods come with limitations such as the restraint on movement imposed by the wires delivering stimulation. The objective of this study was to assess whether the e-Particle (EP), a novel wireless neurostimulator, could sufficiently stimulate the brain to modify behavior without these limitations. APPROACH: Rats were implanted with the EP and a commercially available stimulating electrode. Animals received rewarding brain stimulation, and performance in a conditioned place preference (CPP) task was measured. To ensure stimulation-induced neuronal activation, immediate early gene c-fos expression was also measured. MAIN RESULTS: The EP was validated in a commonly used CPP task by demonstrating that (1) wireless stimulation via the EP induced preference behavior that was comparable to that induced by standard wired electrodes and (2) neuronal activation was observed in projection targets of the stimulation site. SIGNIFICANCE: The EP may help achieve a better understanding of existing brain stimulation methods while overcoming their limitations. Validation of the EP in a behavioral model suggests that the benefits of this technology may extend to other areas of animal research and potentially to human clinical applications.


Assuntos
Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Neuroestimuladores Implantáveis/normas , Desempenho Psicomotor/fisiologia , Tecnologia sem Fio/normas , Animais , Estimulação Elétrica/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Tecnologia sem Fio/instrumentação
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4736-4739, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441407

RESUMO

Neural oscillations enable communication between brain regions. Closed-loop brain stimulation attempts to modify this activity by stimulation locked to the phase of concurrent neural oscillations. If successful, this may be a major step forward for clinical brain stimulation therapies. The challenge for effective phase-locked systems is accurately calculating the phase of a source oscillation in real time. The basic operations of filtering the source signal to a frequency band of interest and extracting its phase cannot be performed in real time without distortion. We present a method for continuously estimating phase that reduces this distortion by using an autoregressive model to predict the future of a filtered signal before passing it though the Hilbert transform. This method outperforms published approaches on real data and is available as a reusable open-source module. We also examine the challenge of compensating for the filter phase response and outline promising directions of future study.


Assuntos
Neurônios , Modelos Neurológicos
5.
J Neural Eng ; 15(3): 036002, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29485103

RESUMO

OBJECTIVE: Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue. APPROACH: This paper describes the in vivo evaluation of flexible parylene microprobes designed to improve the interface with the adjacent neural tissue to limit gliosis and thereby allow for improved recording longevity. The probes were coated with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)) polymer that provides temporary mechanical support for device implantation, yet degrades within 2 h post-implantation. A parametric study of probes of varying dimensions and polymer coating thicknesses were implanted in rat brains. The glial tissue response and neuronal loss were assessed from 72 h to 24 weeks post-implantation via immunohistochemistry. MAIN RESULTS: Experimental results suggest that both probe and polymer coating sizes affect the extent of gliosis. When an appropriate sized coating dimension (100 µm × 100 µm) and small probe (30 µm × 5 µm) was implanted, a minimal post-implantation glial response was observed. No discernible gliosis was detected when compared to tissue where a sham control consisting of a solid degradable polymer shuttle of the same dimensions was inserted. A larger polymer coating (200 µm × 200 µm) device induced a more severe glial response at later time points, suggesting that the initial insertion trauma can affect gliosis even when the polymer shuttle degrades rapidly. A larger degree of gliosis was also observed when comparing a larger sized probe (80 µm × 5 µm) to a smaller probe (30 µm × 5 µm) using the same polymer coating size (100 µm × 100 µm). There was no significant neuronal loss around the implantation sites for most device candidates except the group with largest polymer coating and probe sizes. SIGNIFICANCE: These results suggest that: (1) the degree of mechanical trauma at device implantation and mechanical mismatches at the probe-tissue interface affect long term gliosis; (2) smaller, more flexible probes may minimize the glial response to provide improved tissue biocompatibility when used for chronic neural signal recording; and (3) some degree of glial scarring did not significantly affect neuronal distribution around the probe.


Assuntos
Implantes Absorvíveis/tendências , Córtex Cerebral/metabolismo , Eletrodos Implantados/tendências , Neuroglia/metabolismo , Polímeros/metabolismo , Xilenos/metabolismo , Implantes Absorvíveis/efeitos adversos , Animais , Córtex Cerebral/cirurgia , Eletrodos Implantados/efeitos adversos , Eletrodos Implantados/normas , Masculino , Microeletrodos/efeitos adversos , Microeletrodos/normas , Microeletrodos/tendências , Polímeros/síntese química , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Xilenos/síntese química
6.
Int Rev Psychiatry ; 29(2): 191-204, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28523978

RESUMO

Despite deep brain stimulation's positive early results in psychiatric disorders, well-designed clinical trials have yielded inconsistent clinical outcomes. One path to more reliable benefit is closed-loop therapy: stimulation that is automatically adjusted by a device or algorithm in response to changes in the patient's electrical brain activity. These interventions may provide more precise and patient-specific treatments. This article first introduces the available closed-loop neuromodulation platforms, which have shown clinical efficacy in epilepsy and strong early results in movement disorders. It discusses the strengths and limitations of these devices in the context of psychiatric illness. It then describes emerging technologies to address these limitations, including pre-clinical developments such as wireless deep neurostimulation and genetically targeted neuromodulation. Finally, ongoing challenges and limitations for closed-loop psychiatric brain stimulation development, most notably the difficulty of identifying meaningful biomarkers for titration, are discussed. This is considered in the recently-released Research Domain Criteria (RDoC) framework, and how neuromodulation and RDoC are jointly very well suited to address the problem of treatment-resistant illness is described.


Assuntos
Estimulação Encefálica Profunda/métodos , Retroalimentação , Transtornos Mentais/terapia , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/tendências , Humanos
7.
Sensors (Basel) ; 16(3)2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26959021

RESUMO

Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the "safety factor", as it indicated the degree to which the coating should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential.


Assuntos
Técnicas Biossensoriais/métodos , Interfaces Cérebro-Computador , Rede Nervosa , Polímeros/química , Animais , Fenômenos Biomecânicos , Eletrodos , Análise de Elementos Finitos , Humanos , Ratos , Xilenos/química
8.
Biomed Microdevices ; 17(2): 34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681971

RESUMO

We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.


Assuntos
Materiais Biocompatíveis/química , Teste de Materiais/métodos , Polímeros/química , Próteses e Implantes , Animais , Materiais Biocompatíveis/metabolismo , Encéfalo/embriologia , Interfaces Cérebro-Computador , Embrião de Galinha , Compostos de Epóxi/química , Microtecnologia , Cimento de Policarboxilato/química , Polímeros/metabolismo , Ratos Sprague-Dawley , Sefarose/química , Temperatura , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA