Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS One ; 18(9): e0286107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699039

RESUMO

Nuclear receptors (NRs) are important transcriptional modulators in metazoans. Typical NRs possess a conserved DNA binding domain (DBD) and a ligand binding domain (LBD). Since we discovered a type of novel NRs each of them has two DBDs and single LBD (2DBD-NRs) more than decade ago, there has been very few studies about 2DBD-NRs. Recently, 2DBD-NRs have been only reported in Platyhelminths and Mollusca and are thought to be specific NRs to lophotrochozoan. In this study, we searched different databases and identified 2DBD-NRs in different animals from both protostomes and deuterostomes. Phylogenetic analysis shows that at least two ancient 2DBD-NR genes were present in the urbilaterian, a common ancestor of protostomes and deuterostomes. 2DBD-NRs underwent gene duplication and loss after the split of different animal phyla, most of them in a certain animal phylum are paralogues, rather than orthologues, like in other animal phyla. Amino acid sequence analysis shows that the conserved motifs in typical NRs are also present in 2DBD-NRs and they are gene specific. From our phylogenetic analysis of 2DBD-NRs and following the rule of Nomenclature System for the Nuclear Receptors, a nomenclature for 2DBD-NRs is proposed.


Assuntos
Duplicação Gênica , Receptores Citoplasmáticos e Nucleares , Animais , Filogenia , Bases de Dados Factuais , Receptores Citoplasmáticos e Nucleares/genética , DNA
2.
PLoS Pathog ; 19(7): e1011018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428793

RESUMO

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum. Praziquantel (PZQ) is the method of choice for treatment. Due to constant selection pressure, there is an urgent need for new therapies for schistosomiasis. Previous treatment of S. mansoni included the use of oxamniquine (OXA), a drug that is activated by a schistosome sulfotransferase (SULT). Guided by data from X-ray crystallography and Schistosoma killing assays more than 350 OXA derivatives were designed, synthesized, and tested. We were able to identify CIDD-0150610 and CIDD-0150303 as potent derivatives in vitro that kill (100%) of all three Schistosoma species at a final concentration of 71.5 µM. We evaluated the efficacy of the best OXA derivates in an in vivo model after treatment with a single dose of 100 mg/kg by oral gavage. The highest rate of worm burden reduction was achieved by CIDD -150303 (81.8%) against S. mansoni, CIDD-0149830 (80.2%) against S. haematobium and CIDD-066790 (86.7%) against S. japonicum. We have also evaluated the ability of the derivatives to kill immature stages since PZQ does not kill immature schistosomes. CIDD-0150303 demonstrated (100%) killing for all life stages at a final concentration of 143 µM in vitro and effective reduction in worm burden in vivo against S. mansoni. To understand how OXA derivatives fit in the SULT binding pocket, X-ray crystal structures of CIDD-0150303 and CIDD-0150610 demonstrate that the SULT active site will accommodate further modifications to our most active compounds as we fine tune them to increase favorable pharmacokinetic properties. Treatment with a single dose of 100 mg/kg by oral gavage with co-dose of PZQ + CIDD-0150303 reduced the worm burden of PZQ resistant parasites in an animal model by 90.8%. Therefore, we conclude that CIDD-0150303, CIDD-0149830 and CIDD-066790 are novel drugs that overcome some of PZQ limitations, and CIDD-0150303 can be used with PZQ in combination therapy.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/química , Oxamniquine/farmacologia , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Schistosoma mansoni , Terapia Combinada , Doenças Negligenciadas/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36758271

RESUMO

The antischistosomal drug oxamniquine, OXA, requires activation by a sulfotransferase within the parasitic worm to enable killing. Examination of the pharmacokinetic/pharmacodynamic (PK/PD) relationship for OXA identified an in vitro-in vivo paradox with the maximal clinical plasma concentrations five-to ten-times lower than the efficacious concentration for in vitro schistosomal killing. The parasite resides in the vasculature between the intestine and the liver, and modeling the PK data to determine portal concentrations fits with in vitro studies and explains the required human dose. In silico models were used to predict murine dosing to recapitulate human conditions for OXA portal concentration and time course. Follow-up PK studies verified in mice that a 50-100 mg/kg oral gavage dose of OXA formulated in acetate buffer recapitulates the 20-40 mg/kg dose common in patients. OXA was rapidly cleared through a combination of metabolism and excretion into bile. OXA absorbance and tissue distribution were similar in wild-type and P-gp efflux transporter knockout mice. The incorporation of in vitro efficacy data and portal concentration was demonstrated for an improved OXA-inspired analog that has been shown to kill S. mansoni, S. haematobium, and S. japonicum, whereas OXA is only effective against S. mansoni. Second-generation OXA analogs should optimize both in vitro killing and physiochemical properties to achieve high portal concentration via rapid oral absorption, facilitated by favorable solubility, permeability, and minimal intestinal metabolism.


Assuntos
Oxamniquine , Esquistossomicidas , Humanos , Camundongos , Animais , Oxamniquine/farmacologia , Schistosoma , Esquistossomicidas/farmacologia , Schistosoma mansoni
4.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890311

RESUMO

Oxamniquine (OXA) is a prodrug activated by a sulfotransferase (SULT) that was only active against Schistosoma mansoni. We have reengineered OXA to be effective against S. haematobium and S. japonicum. Three derivatives stand out, CIDD-0066790, CIDD-0072229, and CIDD-0149830 as they kill all three major human schistosome species. However, questions remain. Is the OXA mode of action conserved in derivatives? RNA-interference experiments demonstrate that knockdown of the SmSULT, ShSULT, and SjSULT results in resistance to CIDD-0066790. Confirming that the OXA-derivative mode of action is conserved. Next is the level of expression of the schistosome SULTs in each species, as well as changes in SULT expression throughout development in S. mansoni. Using multiple tools, our data show that SmSULT has higher expression compared to ShSULT and SjSULT. Third, is the localization of SULT in the adult, multicellular eucaryotic schistosome species. We utilized fluorescence in situ hybridization and uptake of radiolabeled OXA to determine that multiple cell types throughout the adult schistosome worm express SULT. Thus, we hypothesize the ability of many cells to express the sulfotransferase accounts for the ability of the OXA derivatives to kill adult worms. Our studies demonstrate that the OXA derivatives are able to kill all three human schistosome species and thus will be a useful complement to PZQ.

5.
Mol Ecol ; 31(8): 2242-2263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152493

RESUMO

Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.


Assuntos
Biomphalaria , Parasitos , América , Animais , Biomphalaria/genética , Biomphalaria/parasitologia , Humanos , Schistosoma mansoni/genética , Senegal/epidemiologia , Caramujos/genética , Tanzânia
7.
Mol Biochem Parasitol ; 245: 111412, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492240

RESUMO

During schistosomiasis, the paired Schistosoma mansoni female produces about 300 eggs each day. These eggs are responsible for the clinical picture and the transmission of the disease. During female development and egg production, fs800 is expressed only in female vitelline cells. Blast search of fs800 did not show similarities with any published sequences by NCBI. We hypothesize that the product of this gene plays a role in S. mansoni egg production. By using RNA interference to knockdown fs800 and quantitative PCR to measure the gene expression in the female schistosomes, we were able to demonstrate that fs800 product is crucial for viable egg production, it has no effect on worm health or male-female pairing. Our data suggest fs800 inhibition as a potential target to prevent transmission and pathology of schistosomiasis.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Feminino , Expressão Gênica , Masculino , Schistosoma mansoni/genética
8.
PLoS One ; 16(8): e0250750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388160

RESUMO

Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm (Schmidtea mediterranea) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm (Macrostomum lignano) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals studied to date. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.


Assuntos
Evolução Molecular , Filogenia , Platelmintos/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Duplicação Gênica , Dedos de Zinco
9.
Int J Parasitol Drugs Drug Resist ; 16: 140-147, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111649

RESUMO

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory. Previously used therapies include oxamniquine (OXA), but shortcomings such as drug resistance and affordability resulted in discontinuation. Employing a genetic, biochemical and molecular approach, a sulfotransferase (SULT-OR) was identified as responsible for OXA drug resistance. By crystallizing SmSULT- OR with OXA, the mode of action of OXA was determined. This information allowed a rational approach to novel drug design. Our team approach with schistosome biologists, medicinal chemists, structural biologists and geneticists has enabled us to develop and test novel drug derivatives of OXA to treat this disease. Using an iterative process for drug development, we have successfully identified derivatives that are effective against all three species of the parasite. One derivative CIDD-0149830 kills 100% of all three human schistosome species within 5 days. The goal is to generate a second therapeutic with a different mode of action that can be used in conjunction with praziquantel to overcome the ever-growing threat of resistance and improve efficacy. The ability and need to design, screen, and develop future, affordable therapeutics to treat human schistosomiasis is critical for successful control program outcomes.


Assuntos
Descoberta de Drogas , Esquistossomose , Animais , Humanos , Oxamniquine , Praziquantel/farmacologia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico
10.
PLoS Negl Trop Dis ; 14(8): e0008517, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810153

RESUMO

Currently there is only one method of treatment for human schistosomiasis, the drug praziquantel. Strong selective pressure has caused a serious concern for a rise in resistance to praziquantel leading to the necessity for additional pharmaceuticals, with a distinctly different mechanism of action, to be used in combination therapy with praziquantel. Previous treatment of Schistosoma mansoni included the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The oxamniquine activating enzyme was identified as a S. mansoni sulfotransferase (SmSULT-OR). Structural data have allowed for directed drug development in reengineering oxamniquine to be effective against S. haematobium and S. japonicum. Guided by data from X-ray crystallographic studies and Schistosoma worm killing assays on oxamniquine, our structure-based drug design approach produced a robust SAR program that tested over 300 derivatives and identified several new lead compounds with effective worm killing in vitro. Previous studies resulted in the discovery of compound CIDD-0066790, which demonstrated broad-species activity in killing of schistosome species. As these compounds are racemic mixtures, we tested and demonstrate that the R enantiomer CIDD-007229 kills S. mansoni, S. haematobium and S. japonicum better than the parent drug (CIDD-0066790). The search for derivatives that kill better than CIDD-0066790 has resulted in a derivative (CIDD- 149830) that kills 100% of S. mansoni, S. haematobium and S. japonicum adult worms within 7 days. We hypothesize that the difference in activation and thus killing by the derivatives is due to the ability of the derivative to fit in the binding pocket of each sulfotransferase (SmSULT-OR, ShSULT-OR, SjSULT-OR) and to be efficiently sulfated. The purpose of this research is to develop a second drug to be used in conjunction with praziquantel to treat the major human species of Schistosoma. Collectively, our findings show that CIDD-00149830 and CIDD-0072229 are promising novel drugs for the treatment of human schistosomiasis and strongly support further development and in vivo testing.


Assuntos
Anti-Helmínticos/farmacologia , Oxamniquine/análogos & derivados , Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Esquistossomose/parasitologia , Animais , Anti-Helmínticos/química , Simulação por Computador , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular , Oxamniquine/química , Ligação Proteica
11.
Artigo em Inglês | MEDLINE | ID: mdl-32315953

RESUMO

Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.


Assuntos
Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Sulfotransferases/química , Animais , Estrutura Molecular , Schistosoma/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma japonicum/efeitos dos fármacos , Schistosoma japonicum/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/farmacologia , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
12.
Mol Biochem Parasitol ; 236: 111257, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027942

RESUMO

Hycanthone (HYC) is a retired drug formerly used to treat schistosomiasis caused by infection from Schistosoma mansoni and S. haematobium. Resistance to HYC was first observed in S. mansoni laboratory strains and in patients in the 1970s and the use of this drug was subsequently discontinued with the substitution of praziquantel (PZQ) as the single antischistosomal drug in the worldwide formulary. In endemic regions, multiple organizations have partnered with the World Health Organization to deliver PZQ for morbidity control and prevention. While the monotherapy reduces the disease burden, additional drugs are needed to use in combination with PZQ to stay ahead of potential drug resistance. HYC will not be reintroduced into the schistosomiasis drug formulary as a combination drug because it was shown to have adverse properties including mutagenic, teratogenic and carcinogenic activities. Oxamniquine (OXA) was used to treat S. mansoni infection in Brazil during the brief period of HYC use, until the 1990s. Its antischistosomal efficacy has been shown to work through the same mechanism as HYC and it does not possess the undesirable properties linked to HYC. OXA demonstrates cross-resistance in Schistosoma strains with HYC resistance and both are prodrugs requiring metabolic activation in the worm to toxic sulfated forms. The target activating enzyme has been identified as a sulfotransferase enzyme and is currently used as the basis for a structure-guided drug design program. Here, we characterize the sulfotransferases from S. mansoni and S. haematobium in complexes with HYC to compare and contrast with OXA-bound sulfotransferase crystal structures. Although HYC is discontinued for antischistosomal treatment, it can serve as a resource for design of derivative compounds without contraindication.


Assuntos
Hicantone , Oxamniquine/análogos & derivados , Esquistossomose/tratamento farmacológico , Sulfotransferases , Animais , Cristalização/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Resistência a Medicamentos , Humanos , Hicantone/efeitos adversos , Hicantone/análogos & derivados , Hicantone/química , Oxamniquine/química , Oxamniquine/uso terapêutico , Praziquantel/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/uso terapêutico , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
13.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652296

RESUMO

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Assuntos
Resistência a Medicamentos/genética , Oxamniquine/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomicidas/uso terapêutico , Adaptação Fisiológica/genética , Alelos , Animais , Cricetinae , Humanos , Níger , Omã , Polimorfismo de Nucleotídeo Único/genética , Ratos , Esquistossomose mansoni/tratamento farmacológico , Senegal , Caramujos/parasitologia , Tanzânia
14.
Mol Biochem Parasitol ; 233: 111218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470045

RESUMO

Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.


Assuntos
Platelmintos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Animais , Clonorchis sinensis/metabolismo , Echinococcus multilocularis/metabolismo , Evolução Molecular , Proteínas de Helminto/genética , Filogenia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Schistosoma/metabolismo , Schistosoma mansoni/metabolismo
15.
Adv Exp Med Biol ; 1154: 45-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297759

RESUMO

Schistosomiasis is a major cause of morbidity in the world; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects over 250 million people in 78 countries of the world and is responsible for some 280,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and research advances.


Assuntos
Esquistossomose , Animais , Humanos , Pesquisa/tendências , Schistosoma/fisiologia , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Esquistossomose/patologia , Esquistossomose/prevenção & controle
16.
ACS Med Chem Lett ; 9(10): 967-973, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30344901

RESUMO

Schistosomiasis is a major human parasitic disease afflicting more than 250 million people, historically treated with chemotherapies praziquantel or oxamniquine. Since oxamniquine is species-specific, killing Schistosoma mansoni but not other schistosome species (S. haematobium or S. japonicum) and evidence for drug resistant strains is growing, research efforts have focused on identifying novel approaches. Guided by data from X-ray crystallographic studies and Schistosoma worm killing assays on oxamniquine, our structure-based drug design approach produced a robust structure-activity relationship (SAR) program that identified several new lead compounds with effective worm killing. These studies culminated in the discovery of compound 12a, which demonstrated broad-species activity in killing S. mansoni (75%), S. haematobium (40%), and S. japonicum (83%).

17.
Trends Parasitol ; 34(11): 982-996, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150002

RESUMO

Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Variação Genética , Schistosoma/genética , Esquistossomose/parasitologia , Animais , Marcadores Genéticos/genética , Genótipo , Especificidade de Hospedeiro , Fenótipo , Schistosoma/patogenicidade , Schistosoma mansoni/genética , Schistosoma mansoni/patogenicidade , Esquistossomose/transmissão , Virulência
19.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28536265

RESUMO

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Assuntos
Resistência a Medicamentos , Proteínas de Helminto/química , Oxamniquine , Schistosoma haematobium/enzimologia , Schistosoma japonicum/enzimologia , Sulfotransferases/química , Animais , Cristalografia por Raios X , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferases/genética
20.
Infect Dis Poverty ; 6(1): 65, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28330495

RESUMO

Schistosomiasis, one of the 17 neglected tropical diseases listed by the World Health Organization, presents a substantial public health and economic burden. Of the 261 million people requiring preventive chemotherapy for schistosomiasis in 2013, 92% of them lived in sub-Saharan Africa and only 12.7% received preventive chemotherapy. Moreover, in 2010, the WHO reported that schistosomiasis mortality could be as high as 280 000 per year in Africa alone.In May 2012 delegates to the sixty-fifth World Health Assembly adopted resolution WHA65.21 that called for the elimination of schistosomiasis, and foresees the regular treatment of at least 75% of school age children in at-risk areas. The resolution urged member states to intensify schistosomiasis control programmes and to initiate elimination campaigns where possible.Despite this, in June 2015, schistosomiasis was indicated to have the lowest level of preventive chemotherapy implementation in the spectrum of neglected tropical diseases. It was also highlighted as the disease most lacking in progress. This is perhaps unsurprising, given that it was also the only NTD with access to drug donations but without a coalition of stakeholders that collaborates to boost commitment and implementation.As a consequence, and to ensure that the WHO NTDs Roadmap Targets of 2012 and World Health Assembly Resolution WHA65.21 are met, the Global Schistosomiasis Alliance (GSA) has been set up. Diverse and representative, the GSA aims to be a partnership of endemic countries, academic and research institutions, international development agencies and foundations, international organizations, non-governmental development organizations, private sector companies and advocacy and resource mobilisation partners. Ultimately, the GSA calls for a partnership to work for the benefit of endemic countries by addressing health inequity and rural poverty.


Assuntos
Disparidades em Assistência à Saúde/estatística & dados numéricos , Pobreza/estatística & dados numéricos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , África Subsaariana/epidemiologia , Erradicação de Doenças/organização & administração , Doenças Endêmicas , Saúde Global , Humanos , Prevalência , Saúde Pública/métodos , População Rural , Esquistossomose/economia , Esquistossomose/mortalidade , Fatores Socioeconômicos , Clima Tropical , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA