Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515167

RESUMO

The SARS-CoV-2 main protease (Mpro) is essential for the life cycle of the COVID-19 virus. It cleaves the two polyproteins at 11 positions to generate mature proteins for virion formation. The cleavage site on these polyproteins is known to be Leu-Gln↓(Ser/Ala/Gly). A range of hexapeptides that follow the known sequence for recognition and cleavage was constructed using RDKit libraries and complexed with the crystal structure of Mpro (PDB ID 6XHM) through extensive molecular docking calculations. A subset of 131 of these complexes underwent 20 ns molecular dynamics simulations. The analyses of the trajectories from molecular dynamics included principal component analysis (PCA), and a method to compare PCA plots from separate trajectories was developed in terms of encoding PCA progression during the simulations. The hexapeptides formed stable complexes as expected, with reproducible molecular docking of the substrates given the extensiveness of the procedure. Only Lys-Leu-Gln*** (KLQ***) sequence complexes were studied for molecular dynamics. In this subset of complexes, the PCA analysis identified four classifications of protein motions across these sequences. KLQ*** complexes illustrated the effect of changes in substrate on the active site, with implications for understanding the substrate recognition of Mpro and informing the development of small molecule inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Antivirais/farmacologia
2.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500348

RESUMO

It is well known that vital enzymes in the replication process of the coronavirus are the SARS-CoV-2 PLpro and SARS-CoV-2 3CLpro, both of which are important targets in the search for anti-coronavirus agents. These two enzymes are responsible for cleavage at various polyprotein sites in the SARS-CoV-2 lifecycle. Herein, the dynamics of the polyprotein cleavage sequences for the boundary between non-structural proteins Nsp1 and Nsp2 (CS1) and between Nsp2 and Nsp3 (CS2) in complex with both the papain-like protein PLpro and the main protease 3CLpro were explored using computational methods. The post dynamics analysis reveals that CS1 and CS2 both have greater stability when complexed with PLpro. Of these two, greater stability is observed for the CS1-PLpro complex, while destabilization resulting in loss of CS2 from the PLpro active site is observed for CS2-PLpro, suggesting the rate of exchange by the papain-like protease is faster for CS2 compared to CS1. On the other hand, the 3CLpro main protease also reveals stability for CS1 suggesting that the main protease could also play a potential role in the cleavage at point CS1. However, destabilization occurs early in the simulation for the complex CLpro-CS2 suggesting a poor interaction and non-plausible protease cleavage of the polyprotein at CS2 by the main protease. These findings could be used as a guide in the development and design of potent COVID-19 antiviral inhibitors that mimic the CS1 cleavage site.


Assuntos
COVID-19 , Poliproteínas , Humanos , Poliproteínas/metabolismo , Papaína/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo
3.
J Mol Model ; 28(10): 327, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138156

RESUMO

The hybrid ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) formalism is employed to investigate the Diels-Alder reaction of the buckminsterfullerene C60. Our computations suggest that the ONIOM2(M06-2X/6-31G(d): SVWN/STO-3G) model, enclosing both the diene and the pyracyclene fragment of C60 in the higher-layer, provides a reasonable trade-off between accuracy and computational cost as it comes to predicting reaction energetics. Moreover, the frontier molecular orbital (FMO) theory and activation strain model (ASM) are jointly relied on to rationalize the effect of -OH and -CN substituents on the activation barrier of this reaction. Finally, reaction paths are scrutinized to get insight into the various forces underpinning the process of cycloadduct formation.

4.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268648

RESUMO

In the present manuscript, we report new insights into the concept of (a)synchronicity in Diels-Alder (DA) reactions in the framework of the reaction force analysis in conjunction with natural population calculations and the atomic resolution of energy derivatives along the intrinsic reaction coordinate (IRC) path. Our findings suggest that the DA reaction transitions from a preferentially concerted mechanism to a stepwise one in a 0.10 Å window of synchronicity indices ranging from 0.90 to 1.00 Å. We have also shown that the relative position of the global minimum of the reaction force constant with respect to the TS is an alternative and quantifiable indicator of the (a)synchronicity in DA reactions. Moreover, the atomic resolution of energy derivatives reveals that the mechanism of the DA reaction involves two inner elementary processes associated with the formation of each of the two C-C bonds. This resolution goes on to indicate that, in asynchronous reactions, the driving and retarding components of the reaction force are mostly due to the fast and slow-forming C-C bonds (elementary processes) respectively, while in synchronous reactions, both elementary processes retard and drive the process concomitantly and equivalently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA