Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098497

RESUMO

Inorganic sources of Mg are commonly used in dairy cow diets, but their availability varies significantly. This study assessed the relative availability of 4 commonly used inorganic Mg sources and a novel alkalinizing proprietary mineral blend [PMB; Multesium (GLC Minerals, LLC, Green Bay, WI, USA)]. The study was a duplicated 6 × 6 Latin square, with 12 nonlactating, non-pregnant Holstein dairy cows assigned to a square based on BW and parity. Cows were fed 90% of their voluntary DMI (diet contained 0.21% Mg). Each experimental period lasted 7 d. On d 2 of each period, urinary catheters were fitted. Total urine collection started on d 3 for 48 h with samples collected and measured every 12 h. On d 4, 30 g of Mg were administered as boluses with gelatin capsules: negative control (one empty capsule), magnesium oxide (MgO), magnesium sulfate (MgSO4), calcium magnesium hydroxide [CaMg(OH)4], calcium magnesium carbonate [CaMg(CO3)2], and PMB [a blend of Ca and Mg sources that includes CaMg(CO3)2, CaMg(OH)4, and MgO]. Blood samples were collected at 0, 1, 2, 3, 12, and 24 h after treatment administration on d 4 of each treatment period. Urine and blood samples were analyzed for Mg and Ca concentration. Statistical analyses were conducted with PROC GLIMMIX including treatment, time, period, square, treatment × time, treatment × period, and time × period as fixed effects, and cow nested within square as a random effect in the model. Urinary Mg excretion for 4 of the Mg sources studied [PMB, MgO, CaMg(OH)4, and MgSO4] increased significantly, representing an increase of at least 40.8% relative to control. The supplementation of CaMg(CO3)2 did not significantly increase relative to control. There were no significant changes in blood Mg concentration with treatment; but, a significant treatment × time effect was observed. Calcium-rich sources [PMB, CaMg(OH)4, CaMg(CO3)2] had lower blood Mg concentrations at 12 or 24 h after treatment than control and CaMg(CO3)2. Based on urinary Mg excretion 24 h after treatment, 4 of the Mg sources evaluated (including PMB) showed a similar availability, however, the availability of the commercial CaMg(CO3)2 source included in our study was similar to the negative control (no-supplemented cows).

2.
J Dairy Sci ; 107(10): 7879-7890, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851583

RESUMO

The objective of this study was to evaluate the effects of amino resin-treated soybean meal (SBM) on ruminal fermentation, nutrient digestion, and N partitioning. The treatments were (1) untreated solvent-extracted SBM, (2) amino resin-treated SBM (AR-SBM), and (3) heat-treated SBM (HT-SBM). The experimental design was arranged as a replicated 3 × 3 Latin square with 6 fermentors in a dual-flow continuous culture system. Treatments were randomly assigned to fermentors within a Latin square for each period. Each fermentor was fed 106 g/d of diet DM equally distributed in 2 feeding times daily at 0800 and 1800 h. Diets were formulated to contain 16% CP, 30% NDF, and 30% starch across treatments. The experiment consisted of 3 experimental periods, each lasting for 10 d. The first 7 d of each period were considered adaptation, and the last 3 d were used for sampling and data collection. On d 8 and 9, samples were collected for analysis of diurnal variation in concentrations of NH3-N, pH, and VFA during the first 8 h after feeding. On d 8, 9, and 10, samples were collected from the liquid and solid effluents accumulated over 24 h for analysis of daily averages of NH3-N and VFA pools, and true ruminal digestibility estimates. Data were analyzed using the MIXED procedure of SAS, and significance was declared when P ≤ 0.05. The model included the fixed effect of treatment and random effects of square, period, and fermentor within square, whereas time and interaction treatment × time were included for analyses of diurnal variation, with time as repeated measures. Compared with SBM, the cultured ruminal contents of AR-SBM and HT-SBM had lower NH3-N concentrations, indicating lower microbial fermentation of protein. Molar proportions of isovalerate and isobutyrate were greater in SBM than AR-SBM and HT-SBM, with greater molar proportion of isobutyrate for SBM, particularly during the first 2 h after feeding. The flow of NH3-N was greater for SBM compared with AR-SBM and HT-SBM, whereas NAN flow, bacterial N flow, and N efficiency were greater for AR-SBM and HT-SBM compared with SBM. Our results indicate that both the amino resin and heat treatments of SBM allow for similar decreases in microbial degradation of CP without limiting microbial protein synthesis in diets with 16% CP. Amino resin treatment may be effective in reducing microbial fermentation of protein in the rumen without adverse effects on digestibility or fermentation parameters as compared with SBM.


Assuntos
Ração Animal , Dieta , Digestão , Fermentação , Glycine max , Nitrogênio , Rúmen , Animais , Rúmen/metabolismo , Nitrogênio/metabolismo , Dieta/veterinária , Bovinos , Nutrientes/metabolismo
3.
J Dairy Sci ; 107(8): 5542-5555, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38395394

RESUMO

The objective of this study was to evaluate the interaction of dietary carbohydrate profile and soybean meal (SBM) replacement with either Chlorella pyrenoidosa (CHL) or Spirulina platensis (SPI) on in vitro fermentation. This experiment was conducted as a randomized complete block design, with fermentation run (3 runs) considered as blocks. The treatments were arranged in a 2 × 5 factorial design, where the first factor was the carbohydrate profile, which was composed of diets containing 42.5% neutral detergent fiber (NDF) and 26.8% starch (HF-LS) or 26.8% NDF and 40.6% starch (LF-HS), and the second factor was the protein source, in which a control diet (100% SBM), partial replacement of SBM with CHL (1/2CHL) or SPI (1/2SPI), or total replacement of SBM with CHL or SPI were used. All experimental diets were formulated to have 17% crude protein. The ruminal fluid was collected from 2 lactating Holstein cows, buffered with Van Soest medium at a ratio of 1:2 and added to serum bottles containing 0.50 g of the experimental diets. Bottles were incubated at 39°C for 24 and 48 h in triplicate; headspace pressure was measured, along with gas collection for methane (CH4) quantification at 0, 2, 4, 8, 16, 24, 36, and 48 h after incubation. The final medium was used to measure pH, ammonia, and VFA. After incubation, feed bags were recovered and used for estimation of dry matter (DM), NDF, and organic matter (OM) degradability. Statistical analysis was carried out using the MIXED procedure of SAS, with carbohydrate profile, protein source, assay, and their interactions as fixed effects, with run and bottle as random effects. Orthogonal contrasts were used to compare carbohydrate profile, algae species, carbohydrate profile × algae interaction, and linear and quadratic effects of SBM replacement with CHL or SPI. There was no interaction effect between carbohydrate profile and algae source. The LF-HS improved gas production, degradability of nutrients, and VFA, mainly increasing the production of butyrate and propionate. When compared with CHL, SPI had a greater degradability of nutrients and branched VFA, along with reduction in total gas production and tended to reduce total CH4 yield. The replacement of SBM with algae linearly reduced the degradability of nutrients, along with a linear reduction in gas production. When replacement of SBM with only SPI was evaluated, SPI slightly reduced the degradability of nutrients; however, it promoted a linear reduction in CH4 yield, as well as reduction in CH4 yield by unit of degraded DM, NDF, and OM. In summary, there was no interaction of carbohydrate profile and protein source, which means that SBM replacement had a similar effect, regardless of dietary carbohydrate profile. Spirulina may be a more suitable algae source than Chlorella due to the potential to reduce CH4.


Assuntos
Ração Animal , Dieta , Ácidos Graxos Voláteis , Fermentação , Glycine max , Metano , Microalgas , Microalgas/metabolismo , Metano/biossíntese , Metano/metabolismo , Dieta/veterinária , Animais , Bovinos , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Biomassa , Feminino , Spirulina/metabolismo , Lactação
4.
J Dairy Sci ; 107(3): 1460-1471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944802

RESUMO

The objective of this study was to evaluate the effects of partially replacing soybean meal (SBM) with algal sources on in vitro ruminal fermentation. Using 6 fermenters in a 3 × 3 replicated Latin square with 3 periods of 10 d each, we tested 3 treatments: a control diet (CRT) with SBM at 17.8% of the diet dry matter (DM); and 50% SBM biomass replacement with either Chlorella pyrenoidosa (CHL); or Spirulina platensis (SPI). The basal diet was formulated to meet the requirements of a 680-kg Holstein dairy cow producing 45 kg/d of milk with 3.5% fat and 3% protein. All diets had a similar nutritional composition (16.0% CP; 34.9% NDF; 31.0% starch, DM basis) and fermenters were provided with 106 g DM/d split into 2 portions. After 7 d of adaptation, samples were collected for 3 d of each period for analyses of ruminal fermentation at 0, 1, 2, 4, 6, and 8 h after morning feeding for evaluation of the ruminal fermentation kinetics. For the evaluation of the daily production of total metabolites and for the evaluation of nutrient degradability, samples from the effluent containers were collected daily. Statistical analysis was performed with the MIXED procedure of SAS with treatment, time, and their interactions considered as fixed effects; day, square, and fermenter were considered as random effects. Orthogonal contrasts (CRT vs. algae; and CHL vs. SPI) were used to depict the treatment effect, and significance was declared when P ≤ 0.05. Fermenters that received algae-based diets had a greater propionate molar concentration and molar proportion when compared with the fermenters fed CRT diets. In addition, those algae-fed fermenters had lower branched short-chain fatty acids (BSCFA) and isoacids (IA), which are biomarkers of ruminal protein degradation, along with lower ammonia (NH3-N) concentration and greater nonammonia nitrogen (NAN). When contrasting with fermenters fed SPI-diets, fermenters fed based CHL-diets had a lower molar concentration of BSCFA and IA, along with lower NH3-N concentration and flow, and greater NAN, bacterial nitrogen flow, and efficiency of nitrogen utilization. Those results indicate that CHL protein may be more resistant to ruminal degradation, which would increase efficiency of nitrogen utilization. In summary, partially replacing SBM with algae biomass, especially with CHL, is a promising strategy to improve the efficiency of nitrogen utilization, due to the fact that fermenters fed CHL-based diets resulted in a reduction in BSCFA and IA, which are markers of protein degradation, and it would improve the efficiency of nitrogen utilization. However, further validation using in vivo models are required.


Assuntos
Chlorella , Microalgas , Feminino , Bovinos , Animais , Fermentação , Lactação , Proteólise , Ração Animal/análise , Biomassa , Chlorella/metabolismo , Farinha/análise , Glycine max , Nutrientes/análise , Nitrogênio/metabolismo
5.
J Dairy Sci ; 106(12): 8746-8757, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678783

RESUMO

The objective of this study was to compare cashew nutshell extract (CNSE) to monensin and evaluate changes in in vitro mixed ruminal microorganism fermentation, nutrient digestibility, and microbial nitrogen outflow. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square design with 4 experimental periods of 10 d (7 d for diet adaptation and 3 d for sample collection). Basal diets contained 43.5:56.5 forage: concentrate ratio and each fermenter was fed 106 g of DM/d divided equally between 2 feeding times. Treatments were control (CON, basal diet without additives), 2.5 µM monensin (MON), 0.1 mg CNSE granule/g DM (CNSE100), and 0.2 mg CNSE granule/g DM (CNSE200). On d 8 to10, samples were collected for pH, lactate, NH3-N, volatile fatty acids (VFA), mixed protozoa counts, organic matter (OM), and neutral detergent fiber (NDF) digestibility. Data were analyzed with the GLIMMIX procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). We observed that butyrate concentration in all treatments was lower compared with CON and the concentration for MON was lower compared with CNSE treatments. Protozoal population in all treatments was lower compared with CON. No effects were observed for pH, lactate, NH3-N, total VFA, OM, or N utilization. Within the 24-h pool, protozoal generation time, tended to be lower, while NDF digestibility tended to be greater in response to all additives. Furthermore, the microbial N flow, and the efficiency of N use tended to be lower for the monensin treatment compared with CNSE treatments. Overall, our results showed that both monensin and CNSE decreased butyrate synthesis and protozoal populations, while not affecting OM digestibility and tended to increase NDF digestibility; however, such effects are greater with monensin than CNSE nutshell.


Assuntos
Anacardium , Monensin , Animais , Monensin/farmacologia , Monensin/metabolismo , Fermentação , Rúmen/metabolismo , Digestão , Dieta , Ácidos Graxos Voláteis/metabolismo , Butiratos/metabolismo , Lactatos/metabolismo , Ração Animal/análise
6.
Int J Qual Stud Health Well-being ; 18(1): 2251222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643465

RESUMO

PURPOSE: Those travelling overseas for work or leisure including male expatriates, longer-term and frequent travellers (ELoFTs) may be at heightened risk for a range of health and wellbeing issues. Social support may mediate this risk. However, from a public health perspective, little is written about how ELoFTs access health information and support and the role of their social networks in facilitating health and wellbeing outcomes. This research was part of a study examining social network processes of Australian male ELoFTs travelling, living, or working in Southeast Asia (SEA). METHODS: Symbolic Interactionism and Grounded Theory were the conceptual framework and methodology supporting semi-structured, in-depth interviews (n = 25) conducted in Australia and Thailand with Australian male ELoFTs to SEA, aged 18 years or older. RESULTS: Findings highlight supports that assist ELoFT transition and adjustment to country of destination or manage their transnational experience. Influential places, people, and points in the migration journey mediated engagement with social support. CONCLUSIONS: ELoFT social networks and the support provided within them may provide a mechanism for intervention across a range of public health issues. Findings may support the development of policy and practice across industries charged with supporting successful ELoFT adjustment.


Assuntos
Políticas , Apoio Social , Humanos , Masculino , Austrália , Teoria Fundamentada , Saúde Pública
7.
Climacteric ; 26(1): 55-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399023

RESUMO

OBJECTIVE: This study aimed to determine the effects of estetrol (E4) on hemostasis, lipids, carbohydrate metabolism and bone turnover in postmenopausal women. METHODS: This study was a multicenter, randomized, double-blind placebo-controlled phase 2 trial. Participants (n = 180, age 43-64 years) received E4 2.5 mg, 5 mg, 10 mg and 15 mg or placebo once daily for 12 weeks. Changes from baseline at week 12 were evaluated versus placebo for hemostasis parameters, sex hormone binding globulin (SHBG), lipids, carbohydrate metabolism and bone markers. RESULTS: Changes for hemostasis parameters were minimal with a small increase only in the normalized activated protein C sensitivity ratio in the E4 15 mg group versus placebo. SHBG increased in the E4 5 mg, 10 mg and 15 mg groups versus placebo. High-density lipoprotein cholesterol increased in all E4 groups; changes were not consistent for other lipids. Significant decreases versus placebo were seen for insulin resistance (E4 10 mg group), hemoglobin A1c (E4 15 mg group) and type 1 collagen C-terminal telopeptide (E4 10 mg and 15 mg groups). Small decreases in osteocalcin in the E4 5 mg, 10 mg and 15 mg groups were significant versus the increase observed in placebo. CONCLUSION: E4 had limited impact on hemostasis and potentially beneficial effects on lipids, carbohydrate metabolism and bone turnover.


Assuntos
Estetrol , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Pós-Menopausa , Hemostasia , HDL-Colesterol , Remodelação Óssea , Método Duplo-Cego , Densidade Óssea , Biomarcadores
8.
J Dairy Sci ; 106(2): 990-1001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526456

RESUMO

The objective of this study was to evaluate the effects of dietary replacement of magnesium oxide (MgO) with calcium-magnesium hydroxide [CaMg(OH)2] and its interaction with ruminal buffer (sodium sesquicarbonate) supplementation on production, Ca and Mg balance, and overall physiological response of mid-lactation Holstein dairy cows. Sixty cows averaging 40.5 ± 7.0 kg of milk/d were used. Treatments were assigned following a 2 × 2 factorial arrangement: (1) MgO, (2) MgO + buffer, (3) CaMg(OH)2, or (4) CaMg(OH)2 + buffer. Diets were formulated to have 16.5% of crude protein, 1.82 Mcal/kg of net energy for lactation, 0.67% Ca, 0.39% P, and 0.25% Mg, all on a dry matter (DM) basis. Treatments were individually top dressed. Milk production, composition, and DM intake were evaluated. A subsample of 20 cows were randomly selected for the evaluation of Ca and Mg balance, blood gases, and electrolytes. Ruminal fluid was also collected for evaluation of pH and Ca and Mg solubility. Effects of Mg source, buffer, and the interaction Mg source × buffer were analyzed through orthogonal contrasts. An interaction of Mg source × buffer was found for DM intake and feed efficiency, in which cows fed CaMg(OH)2 had a similar feed efficiency regardless of ruminal buffer inclusion; however, when cows were fed MgO, the inclusion of buffer reduced feed efficiency. No effects on body weight and milk yield were observed. Buffer addition tended to increase the concentrations of fat, protein, and solids-not-fat, without affecting the yields of these milk components. Magnesium source and buffer did not affect ruminal fluid, blood, urine, or fecal pH; however, buffer supplementation increased urinary pH. Treatment with CaMg(OH)2 increased blood concentration of HCO3-, total CO2, and base excess compared with cows fed MgO. No differences were observed in the ruminal solubility of Ca and Mg or on milk or urinary Ca and Mg excretion. Greater plasma Mg concentration was observed for animals fed MgO compared with cows fed CaMg(OH)2; however, both sources were above the threshold recommended in the literature for dairy cows. Also, a reduction in fecal Mg excretion was observed in animals fed CaMg(OH)2. In summary, we provide evidence that CaMg(OH)2 could replace MgO without affecting performance, overall physiological response, or Ca and Mg balance of mid-lactating dairy Holstein cows.


Assuntos
Lactação , Magnésio , Feminino , Bovinos , Animais , Lactação/fisiologia , Magnésio/análise , Cálcio/metabolismo , Óxido de Magnésio/farmacologia , Leite/química , Dieta/veterinária , Cálcio da Dieta/análise , Rúmen/metabolismo , Ração Animal/análise , Digestão
9.
J Dairy Sci ; 106(2): 1002-1012, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543642

RESUMO

The objective of this study was to determine the effects of including exogenous amylolytic or fibrolytic enzymes in a diet for high-producing dairy cows on in vitro ruminal fermentation. Eight dual-flow continuous-culture fermentors were used in a replicated 4 × 4 Latin square. The treatments were control (CON), a xylanase and glucanase mixture (T1), an α-amylase mixture (T2), or a xylanase, glucanase, and α-amylase mixture (T3). Treatments were included at a rate of 0.008% of diet dry matter (DM) for T1 and T2 and at 0.02% for T3. All treatments replaced the equivalent amount of soybean meal in the diet compared with CON. All diets were balanced to have the same nutrient composition [30.2% neutral detergent fiber (NDF), 16.1% crude protein (CP), and 30% starch; DM basis], and fermentors were fed 106 g/d divided into 2 feedings. At each feeding, T2 was pipetted into the respective fermentor and an equivalent amount of deionized water was added to each fermentor to eliminate potential variation. Experimental periods were 10 d (7 d for adaptation and 3 d for sample collection). Composite samples of daily effluent were collected and analyzed for volatile fatty acids (VFA), NH3-N, and lactate concentrations, degradability of DM, organic matter, NDF, CP, and starch, and flow and metabolism of N. Samples of fermentor contents were collected from each fermentor at 0, 1, 2, 4, 6, and 8 h after feeding to determine kinetics of pH, NH3-N, lactate, and VFA concentrations over time. All data were analyzed using PROC GLIMMIX of SAS (SAS Institute Inc.), and the repeated variable of time was included for kinetics measurements. Treatment did not affect mean pH, degradability, N flow and metabolism, or the concentrations of VFA, NH3-N, or lactate in the effluent samples. Treatment did not affect pH, acetate:propionate ratio, or the concentrations of lactate, NH3-N, total VFA, acetate, propionate, butyrate, isobutyrate, valerate, or caproate. However, the concentration of total VFA tended to change at each time point depending upon the treatment, and T2 tended to have a greater proportion of 2-methylbutyrate and isovalerate than CON, T1, or T3. As 2-methylbutyrate and isovalerate are branched-chain VFA that are synthesized from branched-chain amino acids, T2 may have an increased fermentation of branched-chain amino acids or decreased uptake by fibrolytic microorganisms. Although we did not observe changes in N metabolism due to the enzymes, there could be changes in microbial populations that utilize branched-chain VFA. Overall, the tested enzymes did not improve in vitro ruminal fermentation in the diet of high-producing dairy cows.


Assuntos
Lactação , Propionatos , Animais , Bovinos , Feminino , alfa-Amilases/metabolismo , Ração Animal/análise , Dieta/veterinária , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Lactatos/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo , Amido/metabolismo
10.
Transl Anim Sci ; 6(4): txac157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36568899

RESUMO

Our objective was to evaluate the effects of bacteria (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus lichenformis, Bacillus subtilis, and Enterococcus faecium), enzymes (amylase, hemicellulose, and xylanase), and yeast as additives on the ruminal microbiome. We hypothesized that inclusion of bacteria, enzymes, and yeast would impact butyric bacterial populations. Eight fermenters were arranged in a duplicated 4 × 4 Latin square with the following treatments: 1) control without additives (CTRL); 2) bacterial culture and enzyme blend (EB); 3) bacterial culture and enzyme blend with a live yeast and yeast culture blend (EBY); and 4) double dose of bacterial culture and enzyme blend and the yeast products blend (2X). We conducted four fermentation periods of 10 d each, with the last 3 d for collection of samples. Overall, 64 solid and liquid samples were analyzed by amplification of the V4 region of bacterial 16S rRNA. Data were analyzed with R and SAS. The following orthogonal contrasts were used: 1) ADD-the control compared to all treatments with additives (CTRL vs. EB, EBY, and 2X); 2) YEAST-treatment without yeast compared to those with yeast (EB vs. EBY and 2X); and 3) DOSE-the single dose of enzymes, bacteria, and yeast compared to the doubled dose (EBY vs. 2X). Family Prevotellaceae was more abundant when additives were added (ADD). Additives (ADD) also increased relative abundance of Prevotellaceae Ga6A1 and YAB2003 in solid fraction, and of Prevotellaceae Ga6A1 and two members of Lachnospiracea family in liquid fraction. Yeast (YEAST) decreased relative abundance of Succinivibrionaceae UCG-001 and increased abundance of Ruminococcus and Prevotellaceae UCG-003 in solid fraction. Doubling the dose of enzymes and microbial additives (DOSE) decreased the abundance of Succiniclasticum in solid fraction and Selenomonadaceae in the liquid. Molar proportion of butyrate was highly correlated with abundance of Prevotellaceae Ga6A1 in solid (r = 0.68) and liquid fraction (r = 0.79), and with Unclassified Lachnospiraceae in liquid (r = 0.70). Our results demonstrate that YEAST decreases abundance of succinate synthesizing bacteria, while DOSE decreases abundance of bacteria that metabolize succinate into propionate. Combined bacteria, enzymes, and yeast increase the relative abundance of specific genera primarily within the Prevotellaceae family, which may explain the increase in butyrate molar proportion observed with ADD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA